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EXECUTIVE SUMMARY

LLNL evaluated a number of reliability prediction models for possible use by the NRC in evaluating
nuclear power plant safety systems. Two promising models emerged from a series of candidate measures
previously identified as the most plausible indicators of software reliability. One model uses Bayesian
Belief Networks (BBN) to model the influence of process and product qualities upon reliability and upon
the software measures. The second model is a modification of an existing model developed by Rome
Laboratory. The parameters of the Rome Laboratory model were estimated based upon the previously
identified software engineering measures. Both models depend upon knowing what information the
selected software measures provide about software reliability. These relationships are difficult to ascertain
without access to development information.  The relationships could be developed if sufficient project
data were available.  Both models will require extensive validation before the numerical predictions they
generate could be considered credible.

The BBN models the factors that influence software reliability and the influence of these factors upon the
software measures identified by a previous task. As evidence about the software and the software
development process is gathered in the form of measures, it is entered into the model to update the
reliability prediction. The BBN model considers requirements, architectural design, detailed design,
implementation, and validation testing activity groups. It produces a discretized prediction of the
reliability distribution for the software under consideration.  The BBN model appears to provide a method
that can be used to combine software measures with NRC inspection results to produce a composite
measurement of software quality. This may offer a way to improve the quality and repeatability of NRC
software audits.  The BBN model presented in this report essentially models the thought process of an
auditor applying the review guidance of the Standard Review Plan.  It offers a method for combining
judgements from qualitative assessments (e.g., review according to BTP-14) with quantitative measures
for possible improvement of the NRC software review process.  This path appears to be a viable route to
developing assessment tools that can be useful to the NRC staff and that could be applied in many other
user domains.

The Rome Laboratory model uses checklists to develop quality factors used to adjust a base failure rate
established for the given type of software. The combinatorial model developed in this report is equivalent
to the Rome Laboratory model except that the quality factors are estimated based upon the previously
identified candidate software measures. The combinatorial model does not explicitly consider different
development activity groups. It produces a point estimate of software reliability.

LLNL developed the models to the point where they are ready to be tested. Although neither should be
considered a credible method for software reliability prediction at this time, they both offer possible
approaches that could be further developed. The models could be tested, modified as necessary based on
the tests, and validated.
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CONCEPTUAL SOFTWARE RELIABILITY PREDICTION MODELS
FOR NUCLEAR POWER PLANT SAFETY SYSTEMS

1.  INTRODUCTION

1.1  Project Objective

The objective of this project is to develop a method to predict the potential reliability of software to be
used in a digital system instrumentation and control system. The reliability prediction is to make use of
existing measures of software reliability such as those described in IEEE Std 982 and 982.212. This
prediction must be of sufficient accuracy to provide a value for uncertainty that could be used in a nuclear
power plant probabilistic risk assessment (PRA). For the purposes of the project, reliability was defined
to be the probability that the digital system will successfully perform its intended safety function (for the
distribution of conditions under which it is expected to respond) upon demand with no unintended
functions that might affect system safety.

The ultimate objective is to use the identified measures to develop a method for predicting the potential
quantitative reliability of a digital system. The reliability prediction models proposed in this report are
conceptual in nature. That is, possible prediction techniques are proposed and trial models are built, but in
order to become a useful tool for predicting reliability, the models must be tested, modified according to
the results, and validated.

Using methods outlined by this project, models could be constructed to develop reliability estimates for
elements of software systems. This would require careful review and refinement of the models,
development of model parameters from actual experience data or expert elicitation, and careful validation.
By combining these reliability estimates (generated from the validated models for the constituent parts) in
structural software models, the reliability of the software system could then be predicted.

Modeling digital system reliability will also require that methods be developed for combining reliability
estimates for hardware and software. System structural models must also be developed in order to predict
system reliability based upon the reliability of the individual hardware/software components. Existing
modeling techniques — such as fault tree analyses or reliability block diagrams — can probably be
adapted to bridge the gaps between the reliability of the hardware components, the individual software
elements, and the overall digital system.

This project builds upon previous work to survey and rank potential measurement methods which could
be used to measure software product reliability3. This survey and ranking identified candidate measures
for use in predicting the reliability of digital computer-based control and protection systems for nuclear
power plants. Additionally, information gleaned from the study can be used to supplement existing
review methods during an assessment of software-based digital systems.

1.2  Project Purpose

The ultimate purpose of the method developed to predict potential reliability of digital safety systems is to
provide:

• a reliability prediction along with the associated uncertainty which can be used in a PRA. These values
would be used as input to the PRA model to approximate the probability of success or failure of the
digital system to perform its intended function under accident conditions

and

• information that can be used to supplement existing review methods in an assessment of software-
based digital systems as part of a staff review of (1) applications for nuclear reactor licenses or
permits, (2) amendments to existing licenses, and (3) NRR user needs.
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These purposes require tentatively postulated order-of-magnitude provisional predictions of digital system
reliability. (That is, a conclusion that the eventual digital system failure rate is more likely to be
approximately 10-3 than either 10-2 or 10-4 is considered satisfactory.)

These purposes also require a reliability prediction before the digital system is available for actual testing,
because (1) design changes are much simpler and less expensive to make early in a system’s life cycle;
(2) it is impossible to create a system with a given reliability level if the reliability level cannot be
assessed until the system is already created; and (3) NRC cannot evaluate an applicant’s proposed design
if a reliability prediction must wait until after the complete system is built and tested to be useful.
Consequently, development of a model for estimating potential reliability, in addition to statistical testing
and operational experience, is desirable. This model can be used early in the digital system development
lifecycle, and may possibly be combined to provide an estimate of digital system reliability that is better
than any single method.

1.3  Background

Regulatory Guide 1.152, Revision 14, which endorsed IEEE Standard 7-4.3.2, “Standard Criteria for
Digital Computers in Safety Systems of Nuclear Power Generating Stations,”5 stated that the staff does
not endorse Section 5.15, “Reliability,” as a sole means of meeting the Commission’s regulations for
reliability of digital equipment used in safety systems. Section 5.15 of the standard states, “when
qualitative or quantitative reliability goals are required, the proof of meeting the goals shall include
software used with hardware.” The NRC staff did not endorse that section because there is no general
agreement that a measurement methodology currently exists that provides a credible method to predict
software reliability. Measurement is useful, but it cannot be the sole criterion to predict reliability.

During the last several years, both the NRC and the nuclear industry have recognized that PRA analysis
has evolved to the point where it can be used as a tool for assisting regulatory decision making. In 1995,
the NRC adopted a policy regarding expanded NRC use of PRA. Following publication of the
Commission policy, the Commission directed the NRC staff to develop a regulatory framework that
incorporates risk insights. Recently, NRC staff has developed risk-informed regulatory guides to meet this
directive. PRAs require a value for failure-rate-per-demand to perform its intended function. Digital
systems in nuclear power plant safety applications are expected to have extremely low failure rates
(< 10 4 failures per demand), comparable to those for the existing hardwired systems that the digital
systems will replace. However, no credible methodology currently exists to assess failure rates of this
order for digital systems, so digital systems cannot be considered in any meaningful way when
developing these risk insights. The development of objective predictions for digital system software
reliability which could be used in place of subjective estimates in PRAs, where feasible, will help the
NRC make better risk-informed decisions.

1.4  Statement of the Problem

Calculating the reliability of a hardware device is a well-understood problem. Robust methods have been
developed to calculate hardware reliability, and used for many years when constructing PRA models.
However, the techniques cannot easily be carried over to digital systems, which involve complex
interactions between software and hardware.

Hardware reliability calculation starts with the assumption that the device design is fundamentally correct.
Failures are assumed to be caused by random variability in the physical stresses seen by the device and by
variability in the devices’ ability to withstand these stresses. Consequently, the failure rate of a hardware
device can be calculated from the failures observed in similar devices subject to similar stresses.

Software is a logical, not a physical, component of a system. Therefore, its success or failure is not
affected by physical stress. Failures stem from fundamental errors in the design that cause the system to
fail under certain combinations of system states and input trajectories. Reliability prediction for digital
systems must account for the effects of hardware and software failures on each other.
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In a 1993 study of the problem to quantify software reliability, Ricky Butler and George Finelli stated,
“the quantification of life-critical software reliability is infeasible using statistical methods whether
applied to standard software or fault-tolerant software.” The paper showed that the classical methods of
estimating reliability lead to exorbitant amounts of testing when applied to life-critical software. In
addition, the paper examined reliability growth models and showed that they are incapable of overcoming
the need for excessive amounts of testing. The key assumption of software fault tolerance—that
separately programmed versions fail independently—was shown to be problematic.6

Because of the limitations discussed in the previous paragraphs, even statistical testing of the final system
is incapable of producing realistic reliability predictions for highly dependable systems. Using such data
may lead PRA studies to overestimate the contribution of digital system failures to total risk.
Consequently, even where statistical testing is performed, a different approach to predicting digital
system reliability is needed.

1.5  Approach

It is clear that, at the current state-of-the-practice, no single metric exists that can be utilized to predict
software reliability prior to the availability of the final system. The primary method available when the
final system is available (statistical testing) is not feasible in many cases where the demonstration of very
high levels of reliability (e.g., greater than 0.999) is desirable. Therefore, the NRC requested that a
different approach be investigated by this research. It was postulated that some selected “set” of measures
might be combined by some algorithm to provide a better early prediction than any single qualitative
measure currently used by industry. The approach outlined below was structured to test this theory.

The project consisted of the following five individual tasks structured in a sequence to develop and test an
algorithm that would construct a prediction of digital system reliability and a value for the associated
uncertainty for the prediction.

TASK 1— Investigate current software product reliability measurement methods.

This task was intended to perform a complete survey of all potential measures that might be of
use in estimating software reliability. After completion of the survey, these measures were to
be ranked to arrive at the most reasonable set for which an algorithm can be developed.

TASK 2— Develop conceptual software reliability measurement methodology based upon selective use
of current software product reliability measurement methods.

This task was to develop one or more algorithms that can be used to predict software reliability
to within an order of magnitude.

TASK 3— Test the conceptual software reliability measurement methodology.

This task was to perform the measurements required for the algorithms developed in the
previous task and compare the results to field data.

TASK 4— Develop the digital system algorithm, incorporating conceptual software reliability
measurement methodology.

This task was intended to integrate the resultant algorithms developed in Task 2 with hardware
algorithms to form an integrated digital system measurement technique.

TASK 5— Test the digital system measurement algorithm.

This task was to perform the measurements required by the algorithm developed in the
previous task and compare the results to field data.
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1.6  Task 2 Summary

This report documents the results of the Task 2 development of models to predict software product
reliability using the candidate software reliability measures identified in Task 1. The task began with the
development of a high-level model describing the factors that influence software reliability. This high-
level model is based on the principles described in Appendix 7.0A of the NRC’s Standard Review Plan
for Light Water Reactors.7 These principles were used to produce two software reliability prediction
methods. One method uses a Bayesian Belief Network (BBN) to model prior beliefs about the reliability
of a typical software element and then uses information from the process and product measures to update
this belief. The other method mathematically combines measures to predict fault density which could then
be converted to a reliability prediction.

Both models depend heavily on the opinions of a few researchers as the basis for both their structure and
their parameters. Therefore, the accuracy of numerical estimates from these models is highly suspect. The
models proposed may, provide a framework within which the influences on software reliability may be
debated and data or additional opinions about the precise nature of these influences can be gathered.

The BBN model in particular offers a method by which information from software measures can be
combined with NRC review and inspection results to improve the objectivity and repeatability of NRC
assessments of software quality.

1.6.1  Considerations

The choice of potential reliability measures, and the evaluation of these measures, was heavily influenced
by the special requirements of the NRC. Specifically, the following factors were used in the evaluation:

• NRC reviews of digital instrumentation and control systems submitted by applicants and licensees are
expected to be governed by the Standard Review Plan (SRP) Section 7, “Instrumentation and
Controls” and the supporting Regulatory Guides referenced by the SRP. Appendix 7.1-C of the SRP
notes that the causes of software unreliability are fundamentally different than those addressed by
hardware reliability estimation methods. Currently numerical reliability estimation methods do not
readily apply to software used under circumstances of very infrequent demand. Consequently, the SRP
describes in detail the qualitative method to be used by the NRC in drawing inferences about the
reliability of software in digital instrumentation and control safety systems. The SRP emphasizes a
three-step approach to the software portion of the reviews. Step 1 requires review of the software
planning documents; Step 2 requires review of the applicant/licensee documentation that demonstrates
that the plans have been followed; and Step 3 requires that the design outputs resulting from the
software development meet specified acceptance criteria. Branch Technical Position (BTP) HICB-14,
Guidance on Software Reviews for Digital Computer-Based Instrumentation and Control Safety
Systems, describes the assessment of software in considerable detail. BTP HICB-14 is basically a
qualitative review of the software development process based on current state-of-the-practice. The first
goal of this project was to provide a quantitative estimate of software reliability that could be used to
support the review process outlined in BTP HICB-14 and SRP Chapter 7.

• Given the NRC emphasis on evaluating submittals early in the lifecycle, a second goal was to evaluate
potential measures that might be usable in a PRA developed early in the software lifecycle. The
accuracy requirements for the reliability figures required for the software portion of a PRA need be no
higher than those used for hardware portions. That is, an order-of-magnitude estimate is considered
sufficient.* While this goal was a consideration during this study, NRC directed LLNL to focus mainly
on the first goal.

* For example, the individual component failure rates that made the most important contributions to uncertainty in the ABWR PRA has error

factors of between 5 and 15 [General Electric 1993].  This corresponds to a span of 1.4 to 2.3 orders of magnitude at the 95% confidence level.
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1.6.2  Task 2 Process

Task 2 consisted of the following steps.

1. Review existing and proposed software reliability prediction methods that utilize measures beyond
statistical test results.

2. Develop a high-level model outlining the factors that influence software reliability.

3. Select software reliability prediction methods that fit the high-level model. The Bayesian Belief Model
(BBN) and Rome Laboratory combinational models were selected because they appeared to be the
most promising techniques discussed in the current literature.

4. Select measures from the Task 1 report for use in the models.

5. Develop the BBN model.

a) Develop an influence diagram for requirements phase.

b) Develop an influence diagram showing relationship between phases.

c) Develop remaining phase models and integrate into overall influence diagram.

d) Estimate model parameters.

6. Develop the combinatorial model.

a) Select the model form.

b) Develop “confidence factors” to fit the selected form.

c) Develop a method to combine confidence factors into a model.

1.6.3  Summary of Results

Two modeling methods were selected: a Bayesian Belief Network based upon the proposal by Martin,
et.al.8, and a combinatorial model based on Rome Laboratory’s “Guidebook for Software Reliability
Measurement and Testing”9.

The BBN models the factors that influence software reliability and the influence of these factors upon the
software measures identified by Task 1. As evidence about the software and the software development
process is gathered in the form of measures, it is entered into the model to update the reliability
prediction. The BBN model developed considers requirements, architectural design, detailed design,
implementation, and validation testing. It produces a discretized prediction of the reliability distribution
for the software under consideration.

The Rome Laboratory model uses checklists to develop quality factors used to adjust a base failure rate
established for the given type of software. The combinatorial model developed for this report is
equivalent to the Rome Laboratory model except that the quality factors are estimated based upon the
candidate software measures identified by Task 1. The combinatorial model does not explicitly consider
different development activity groups. It produces a point estimate of software reliability.

Both models require extensive validation before the numerical predictions they generate could be
considered credible. The BBN model, however, appears to provide a method that can be used to combine
software measures with NRC inspection results to produce a prediction of software quality. This may
offer a way to improve the quality and repeatability of NRC software audits.

If the software engineering community (perhaps in the form of a representative group of experts) can
agree on the structure of either model, it could provide a framework for further research to better define
the mathematical relationship between the selected measures and software reliability or quality. The
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research might take the form of data collection from actual software projects, controlled experiments, or
formal elicitation of expert opinion.

1.7  Assumptions

Four assumptions were necessary to constrain the models.

a) The software and the development organization under consideration are assumed not to be seriously
flawed. That is, an abbreviated review in accordance with the review practice and criteria described in
Standard Review Plan Appendix 7.0-A and BTP-14 would not lead to a summary rejection of the
software products. The assumption affects the selection of the base reliability prediction for the
combinatorial model, the prior beliefs of the BBN model, the practical ranges of the measures
considered, and the conditional probability distributions in the BBN model.

b) Initial versions of software products that have very high fault densities have been reworked from
scratch and subjected to complete V&V rather than being simply revised with V&V applied only to
the changes. This assumption has effects as discussed in the first bullet.

c) No software is perfect. This establishes a performance criteria for the models that they never predict
reliability of 1.

d) Safety-related software would not be released for use with known fatal problems, and a minimal
amount of validation testing would have been conducted.   
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2.  PRINCIPLES BEHIND MODELS

Both of the models discussed above are built upon the assumptions about the influences on software
quality and reliability that are embodied into the NRC review process described in the Standard Review
Plan.

2.1  Influences on Software Reliability

Any reliability prediction model should reflect the basic assumptions about what factors influence
software reliability. The NRC’s Standard Review Plan reflects an accepted philosophy about the
relationship between the internal attributes of software development processes and products and the
external attributes of software quality and reliability. Consequently, the philosophy embodied in the SRP
offers a reasonable starting point in developing a quantitative method for predicting reliability based upon
measurement of the internal attributes. In particular, Appendix 7.0-A, Branch Technical Position HICB-
14, and Regulatory Guide 1.172 describe NRC’s views of what information is needed to form a
judgement about software reliability. The SRP process (described below) was developed based on the
current state of the art, which is totally process-oriented and judgmental, based on the reviewer’s
knowledge, and hence is a qualitative measure. The SRP lacks specific quantitative measures of
reliability. The main thrust of this study is to develop usable metrics.

Essentially, SRP Section 7.0-A reflects the view that, qualitatively, the reliability of software can be
established by confirming that:

1. The software development process was well planned;

2. The planned development process was faithfully implemented;

3. The design outputs (products) meet the software functional requirements; and

4. The design outputs have characteristics consistent with having been developed through a well-planned
and well-implemented process.

With the exception of confirming that design outputs meet functional requirements, none of this
information alone is sufficient to form a judgement about reliability. Exhaustive review and testing of
design outputs may be adequate by itself, but is not practical for either the design or the review
organization. Consequently, the judgement about reliability is formed from imperfect knowledge of each
of these topics.

Where actual experience with a product is available, the SRP acknowledges that this experience data may
be used to supplement what is learned from examination of planning, process, and design outputs.

The evaluation process described in SRP Appendix 7.0-A pre-supposes that the software will be
developed by a competent organization using an adequately trained and experienced staff. (This is pre-
supposed by the instrumentation and control reviewers because the organizational and personnel factors
are examined by other parts of the NRC.)

Finally, the NRC review process encourages that safety systems be simple and recognizes that more
extensive review is needed to gain confidence in systems that are more complex.

2.2  Modeling Approaches

After a review of current metrics (see Volume I) we determined that the best approach was via modeling.
The overall approach taken was to develop first a high-level reliability model that describes the conditions
that influence software reliability. We examined the measures identified in Task 1 to understand what
information those measures give us about the conditions that influence reliability. Then we built models
that reflect these influences.
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Two types of models were developed. The first is a Bayesian Belief Network that models the influences
of conditions upon each other as conditional probabilities and uses Bayes rule to propagate the observable
conditions to a final estimate of the probability of the not directly observable condition. The second is a
combinatorial model based on ROME Laboratory's work, that performs a simple mathematical
combination of value of observed measures to provide a prediction about reliability.

2.2.1  Bayesian Belief Networks

A Bayesian Belief Network (BBN) is a graphical network (influence diagram) and associated probability
distributions that represent probabilistic relationships among variables, even if the relationships involve
uncertainty, unpredictability, or imprecision. The network is made up of nodes and arcs where the nodes
represent uncertain events and the arcs the causal/relevance relationships between the events. This
network, along with an associated set of node probability tables (NPTs), represents the relationships in the
network. BBNs can be used to help make optimal decisions, develop control systems, or make plans and
predict events based on partial or uncertain data. Jensen10 offers an excellent introduction to BBN
modeling. A good introduction is also available on the Hugin Expert A/S website.11

BBNs combine the advantages of an intuitive visual representation with a sound mathematical basis in
Bayesian probability. Although Bayesian probability has been around for some time, the possibility of
building and executing realistic models has only recently been made possible through algorithms and
software tools, like Hugin and Hugin Lite (the BBN modeling tool we used). With BBNs, it is possible to
articulate expert beliefs about the dependencies between different variables and to propagate the impact of
evidence on the probabilities of uncertain outcomes, such as future system reliability.

The key feature of BBNs is that they enable us to model and reason about uncertainty. BBNs are a way of
describing complex probabilistic reasoning. The advantage of using a BBN is that the BBN represents the
structure of the argument in an intuitive, graphical format.

The main use of BBNs is in situations that require statistical inference: in addition to statements about the
probabilities of events, the user knows some evidence; that is, some events that have actually been
observed, and wishes to infer the probabilities of other events not yet observed, or for which direct
observation is impossible.

2.2.1.1  Strengths

Bayesian analysis can be used for both forward and backward inference. The major benefit of Bayesian
inference over classical statistical inference (which deals with confidence levels rather than statements of
probability) is that it explicitly describes the fact that observation alone cannot predict the probability of
unobserved events, without some pre-existing information about the latter. In the Bayesian interpretation,
a probability describes the strength of the belief which an observer can justifiably hold that a certain
statement of fact is true (subjective probability). The subject, after observing the outcome of an
‘experiment’ (i.e., collecting new data), updates the belief held before the experiment (the ‘prior
probability’), producing a posterior probability. The need to assume prior beliefs is a key part of Bayesian
inference.

BBNs also offer the advantages that they allow inferences to be based upon a combination of objective
and subjective evidence and allow these inferences to be drawn based upon limited input data. As
additional data are gained the confidence in the inference drawn will normally increase. Consequently, the
technique is very useful in circumstances where the assessors have little control over the specific types of
data to be collected about processes and products. Once a set of input data has been collected and
analyzed using a BBN model, the model may also be used to conduct sensitivity analyses to identify the
additional data that will be most useful in refining the reliability estimate.  
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2.2.1.2  Weaknesses

Our experience using BBN has shown that the requirement to fill in the relevant Node Probability Tables
(NPT) in a sensible way is its weakness as well as its strength. It is not always easy to obtain sensible
prior probabilities, even from experts. The derivation of the node dependencies in the network and the
form of the network itself needs to be validated.

2.2.2  Combinatorial Model

The Rome Laboratory combinatorial method attempts to identify a mathematical function that relates the
observable information to the unknown feature of interest, reliability. Most existing reliability prediction
models are of this type. It is a relatively easy way to build models based on various pieces of information.
These models may be relatively imprecise, but a well-developed combinatorial model based upon
measures may give reliability estimates that are as good as existing models, using more objective and
readily available input data.

The construction of a combinational model is a two-step process. The first step toward constructing a
combinatorial model was to identify assumptions about the relationship between the observable data and
reliability. The second step was to develop simple mathematical functions to express these relationships
quantitatively.

The combinatorial method in this project was constructed based on the Rome Laboratory model. Among
the existing software reliability prediction models, the Rome Laboratory model was typical and well-
known. Its structure was easily adaptable to the use of metrics identified in Task 1 work. It reflected
considerable research to determine typical fault densities and transformation of fault density to failure
rate. For these reasons, we chose the Rome Laboratory model as the underlying foundation of our
combinatorial model.

The general Rome Laboratory model may be expressed as follows:

Rp=A*D*S1*S2,

where A, D, S1, and S2 represent base reliability, process quality factor, the requirement and design
quality factor, and implementation quality factor. In the Rome Laboratory model, these quality factors
were chosen from tables or calculated based upon the percentage of checklist questions answered. We
proposed, instead, to base these quality factors upon software measures identified in Task 1.

2.2.2.1  Strengths

The combinatorial model has the advantage that it is simpler and easier to understand than the BBN
models. The combinatorial model as expressed here also has substantially fewer parameters than the BBN
model, so it will be simpler to implement.

2.2.2.2  Weaknesses

A weakness of our Rome Laboratory based model is that it assumes independence between the input
parameters. It would be possible to reduce the strength of this assumption, but that would require more
complicated formulation and more detailed understanding of the dependencies. The BBN allows the
model of dependencies to be built from a combination of simpler, local dependencies.
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3. PROPOSED MODELS

Both models are built on the assumptions about the influences on software quality and reliability
embodied into the NRC review process described in the Standard Review Plan.

3.1  High-Level Reliability Model

The influences on software reliability discussed in Section 2.1 above can be modeled in the form of an
influence diagram as shown in Figure 1. Influence diagrams are directed graphs that show how the states
of a system affect other states. For example, Figure 1 shows that the quality of the software development
process influences product quality and that product quality influences reliability. Process quality, in turn
is influenced by the quality of the development plans and team as well as the complexity of the software.
Complexity influences the level of process quality needed to produce a quality product. We used
influence diagrams to express the high-level concepts that we believe should be expressed in any
reliability prediction model. A number of textbooks including Barlow12 and Almond13 provide good
discussions of influence diagrams.

Figure 1. Influence Diagram Model of SRP Assumptions

3.2  Bayesian Belief Network Model

The top level influence diagram of Figure 1 was used to develop influence diagrams for each of the
activity groups of the software development lifecycle. The basic steps in developing the BBN model
were:

• Create a more detailed influence diagram showing the relationship between process characteristics,
product characteristics, and reliability (discussed in Section 4.3.1),

• Modify the influence diagram to describe the relationships between these process and product
characteristics and the software measures identified in Task 1 (discussed in Section 4.3.2), and

• Probabilistically describe the influences of process and product characteristics upon the measures and
upon each other. (discussed in Section 4.3.3).

Sections 4.3.4 and 4.3.5 discuss the use of the BBN model and provide an example of its use. An
evaluation of the model’s strengths and weaknesses is provided in Section 4.3.6.

3.2.1  Development of the BBN Model

This typical influence diagram shown in Figure 1 was further refined to create an influence diagram. The
software development process actually entailed two independent processes: the development of the
software products themselves and the verification and validation (V&V) of these products. To account for
the two processes, the influence diagram of Figure 1 was modified as follows.

Complexity

Product Quality Reliability

Plan Quality

Team Quality

Process Quality
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Product Reliability
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Complexity

Plan Quality

Team
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Figure 2. Influence Diagram Showing Separate Development and V&V Processes

The model of Figure 1 represents the state of the software and the development process by which it was
produced. The actual state of the nodes shown in Figure 2 is cannot be determined, but it influenced
conditions that were observable. The measurements identified in the Task 1 report were observable
conditions influenced by the state of the software and the software development process. Figure 2 was,
therefore, modified to show the influence on software measures as shown in Figure 3, below. The ovals
represent the actual (but unknown) states of the processes and products. The rectangles represent
measurements that provide evidence about the state of the process and products.

A further refinement of this model was to recognize that the development process involves producing
initial software products. The V&V process evaluates these initial products and identifies errors to the
development team. The development team corrects the errors  to produce a final product. The model
including this refinement is shown in Figure 4.

At this stage, the model lumped all of the development activities together. We improved the model further
by  using the influence diagram of Figure 4 to separately model the following groups of development
lifecycle activities:  requirements, architectural design, detailed design, implementation, and testing.
Figure 5 shows the model that deals separately with these development activities. Such a “phase-based”
model allows the use of more data and provides a mechanism to understand the influence of each phase
on reliability. Furthermore, the reliability improvement achieved by error detection in successive phases
is at least partially addressed by the back-propagation of later phase evidence through the BBN.

The reliability with which the software performs its safety function is influenced by: 1) the degree to
which the software correctly implements the requirements placed upon it by the system in which it
operates, and 2) the degree to which the system-level requirements correctly reflects safety requirements.
Thus, in developing the phase model of Figure 5 it became clear that it was necessary to include
information about the correctness of the original system requirements. This is modeled by the node
labeled “System Requirements Quality.”

In the model shown in Figure 5, the requirements, design, and implementation groups were connected
together in series. The connections between each of these is a node representing the conditional
probability that the safety requirements were correctly implemented if (1) the current phase correctly
implemented the requirements imposed by the previous phase, and (2) the requirements from the previous
phase correctly reflected the safety requirements.

The validation testing phase plays a fundamentally different role than the development activities and was
thus connected into the phase model of Figure 5 differently. Validation testing produces two kinds of
outputs: 1) test results, in terms of reliability measures, and 2) test anomolies, assessed and, if necessary,
corrected to improve the reliability of the software. The test results provide evidence about the reliability
of the software; quality of the test process affect the believability of these results. The feedback of test
results into the development is modeled as an anomoly resolution process which increases the reliability
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of the software more or less depending upon the quality of the testing and the quality of the resolution
process.   
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Figure 3. Influence of Process and Product Quality on Observable Measures
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Figure 4. Incorporation of Initial and Final Software Products into the Influence Diagram

Reliability

Development
Process Quality

Complexity

V&V Process
Quality

Development Quality
Measures

V&V Quality
Measures

Initial Product Quality
Measures

Plan Quality

Team Quality

Plan Quality

Team Quality

Team Quality
Measures

Team Quality
Measures

Plan Quality
Measures

Plan Quality
Measures

Initial Product
Quality

Reliability Measures

Combined V&V &
Development Process

Quality Measures

Combined V&V &
Product Quality

Measures

Final Product Quality
Measures

Final Product
Quality



Section 3.  Proposed Models

16

Figure 5. Phase Model
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3.2.2 Incorporation of Measures from Task 1 into the BBN Model

Table 1 shows the highly rated measures for each phase as identified by the Task 1 study [Lawrence
1999]. These measures were examined to determine how to use them as evidence in the BBN model.
Table 2 shows the relationship between the measures and the BBN model. In Table 1 the measures are
associated with the BBN lifecycle activity in which the measure can be made. Table 2 relates each
measure to the activity group about which the measure provides information. These relationships are not
always the same. For example, the fault density and defect densities measured during the validation test
phase actually provide information about the quality of the design and code. Thus, for use in the BBN
model, they are related to the detailed design and implementation phases. The set of measures used in the
BBN model is not identical to the set identified in Task 1 as explained below.

Four of the measures considered in Task 1: k-out-of-n model, Markov reliability model, reliability block
diagrams, and independent process reliability are not actually measures. Instead, they are methods for
building structural models of software to develop a reliability estimate for a larger software element based
upon the estimated reliability of the smaller elements of which it is composed. They are, therefore, not
included in the BBN model. These modeling techniques were included in the Task 1 study because IEEE
982 treats them as measures. While these techniques are not used in the BBN model, they may be useful
in constructing models for use as inputs in the reliability estimates provided by the BBN model.

The Task 1 study treated cyclomatic complexity and minimal unit test coverage determination as different
measures because IEEE 982 identifies them thus. They are, however, only different uses of the same
measure. Therefore, only cyclomatic complexity is used in the BBN model.

The Task 1 study identified System Performance Reliability as a candidate measure. This measure
predicts the probability of meeting timing deadlines. Since the Standard Review Plan expects that the
timing performance of safety software will be deterministic, this measure is not used in nuclear power
plant safety system applications. Therefore, this measure is not included in the BBN model.

The measure “Fault Number Days” measures the cumulative number of days that faults remain in the
software under development. This number may be highly dependent upon the development process
schedule and the size of the code. To reduce this dependence, the BBN model uses the measure of the
number of phases over which faults remain. This measure is expressed as “Fault Number Phases.” It may
be useful to consider expressing this in terms of fault density.

In an attempt to identify additional process measures, the list of measures from Task 1 was re-examined.
Task 1 identified the following measures as process measures.

• Cost —The Task 1 study rated it as relatively credible and repeatable, but it has not been validated and
there is little experience with its use. It is not included in the BBN model.

• Fault number days — included in the Task 1 list of candidate measures.

• Functional test coverage — this measure was included in the BBN model as an indication of test
quality. The Task 1 study rated it relatively highly with respect to all quality criteria.

• Man-hours per major defect detected — Included in the Task 1 list of candidate measures.

• Mean time to discover next k faults — this measure is very similar, but more quantitative than the
cumulative failure profile measure identified in Task 1. If directness is ignored as a ranking criterion,
this measure is preferable to the cumulative failure profile and thus replaces that measure in the BBN
model. For the purpose of the BBN model, k is taken at 1, so that the mean time to failure predicted by
the reliability testing is the actual measure used in the model.

• Modular test coverage — included in the Task 1 list of candidate measures.
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• RELY – Required software reliability — not added to the measure list because the Task 1 analysis
rated this measure low against all of the quality criteria.

• Requirements change requests – this measure was included in the BBN model as an indication of the
requirements development process quality. Task 1 ranked it high with respect to credibility and
repeatability, and the measure is relatively well validated.

• Schedule —The Task 1 study rated it as relatively credible and repeatable, but it has not been validated
and there is little experience with its use. It is not included in the BBN model.

• Software capability maturity model — this measure was included in the BBN model as an indication
of development process, V&V process, and test process quality. Task 1 ranked it moderately with
respect to credibility and repeatability, but the measure is relatively widely used and validated to some
extent.

• Software process capability determination — this measure is similar in purpose to the software
capability maturity model, but it is not as repeatable or as well validated. Therefore, it is not included
in the BBN model. Preference is given to the software capability maturity model.

• Test accuracy — the Task 1 study ranked this measure relatively low on all quality criteria except
repeatability. It is not included in the BBN model.

None of the measures identified as candidates for further study in Task 1 provide information about plan
quality or team quality. Furthermore, few of these measures relate to development or V&V process
quality. This is due, at least in part, to the Task 1 assumption that preference should be given to direct
measures of reliability. The BBN model allows the use of indirect measures in the reliability estimation
process; therefore, for this use of the measures, directness is not a useful criterion for ranking.

After the evaluation of all known process measures and addition of measures to the model as discussed
above, there is a significant lack of measures that can provide evidence of team or planning quality.
Therefore, there is little benefit to including these explicitly in the model. Consequently, the individual
phase model of Figure 4 was simplified to lump planning, team and process implementation together as
illustrated in Figure 6.

Figures 7 to 11, below, show the complete model, expanding each of the phase quality nodes of Figure 5,
using the generic phase model of Figure 6, and incorporating the phase specific measures described in
Table 2.  The node names in these figures incorporate a letter to identify the associated phase. The
meaning of each node is described in more detail in Appendix A.
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Figure 6. Influence Diagram Model of SRP Beliefs
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Table 1. Measures selected for consideration in reliability estimation by the Task 1 study

Lifecycle Phase Measures Selected

Requirements Reviews, inspections and walkthroughs
Man hours per major defect detected
Cause-and-effect graphing
Function point analysis
Project initiation reliability prediction

Architectural Design Requirements traceability
K-out-of-n model
Markov reliability model
Reviews, inspections and walkthroughs
Graph-theoretic static architecture
complexity
Reliability block diagrams
Man hours per major defect detected
Function point analysis

Detailed Design Design defect density
Cyclomatic complexity
Independent process reliability
K-out-of-n model
Markov reliability model
Reviews, inspections and walkthroughs
Man hours per major defect detected
Reliability block diagrams
System design complexity

Implementation Minimal unit test case determination
Design defect density
Cumulative failure profile
Code defect density
Cyclomatic complexity
Bugs per line of code (Gaffney estimate)
Markov reliability model
Independent process reliability

Testing Fault density
System performance reliability
Design defect density
Run reliability
Failure rate
Cumulative failure profile
Reliability growth function
Code defect density
Modular test coverage

Operation System performance reliability
Run reliability
Cumulative failure profile
Mean time to failure
Reliability prediction for the operational
environment
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Table 2. Use of measures in the BBN model

Measure Requirements Architectural
Design

Detailed Design Implementation Validation
Testing

Test Anomaly
Resolution

Reliability

Bugs per Line of Code
(Gaffney)

Prior estimate of
reliability

Cause and Effect Graphing Initial Product
Quality
Final Product
Quality

Code Defect Density Initial Product
Quality
Final Product
Quality

Initial Product
Quality
Final Product
Quality

Design Defect Density Initial Product
Quality
Final Product
Quality

Initial Product
Quality
Final Product
Quality

Initial Product
Quality
Final Product
Quality

Fault Density Final Product
Quality

Fault Number Phases Final Product
Quality

Final Product
Quality

Final Product
Quality

Final Product
Quality

Function Point Analysis Initial Product
Quality
Final Product
Quality

Initial Product
Quality
Final Product
Quality

Initial Product
Quality
Final Product
Quality

Man-hours per Major Defect Initial Product
Quality
V&V Process
Quality

Initial Product
Quality
V&V Process
Quality

Initial Product
Quality
V&V Process
Quality

Initial Product
Quality
V&V Process
Quality

Initial Product
Quality
V&V Process
Quality

Requirements Traceability Initial Product
Quality
Final Product
Quality
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Measure Requirements Architectural
Design

Detailed Design Implementation Validation
Testing

Test Anomaly
Resolution

Reliability

Failure rate Observed
Reliability

Project Initiation Reliability
Prediction

Prior estimate of
reliability

Reliability Prediction for the
Operational Environment

Prior estimate of
reliability

Graph-theoretic static
architecture complexity

Complexity Complexity

Cyclomatic Complexity Complexity Complexity Complexity

System Design Complexity Complexity Complexity

Run Reliability Observed
Reliability

Modular Test Coverage Final Product
Quality

Reliability Growth Function Final Product
Quality

Reviews Inspections and
Walkthroughs

V&V Process
Quality

V&V Process
Quality

V&V Process
Quality

V&V Process
Quality

V&V Process
Quality

Mean Time to Discover Next k
Faults

Final Product
Quality

Functional Test Coverage Final Product
Quality

Requirements Change
Requests per Requirement

Development
Process Quality

Software CMM Development
Process Quality
V&V Process
Quality

Development
Process Quality
V&V Process
Quality

Development
Process Quality
V&V Process
Quality

Development
Process Quality
V&V Process
Quality

Development
Process Quality
V&V Process
Quality
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Figure 7. Requirements Phase BBN Model
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3.2.3  Estimation of Model Parameters

The parameters that had to be estimated for the BBN model were the probabilities of each node being in a
given state conditional upon the state of the other nodes that influence it. The nodes were classified into
two types: observable nodes and non-observable nodes. The non-observable nodes represent a condition
of the software or software development process about which we would like to know, but cannot directly
observe. The observable nodes represent the measurements that could be made on the software or
software process. The observations provide evidence which is used to infer the state of the non-observable
nodes. The BBN model infers the state of the non-observable nodes based upon the state of the observable
nodes (measures), prior beliefs about the states of the non-observable nodes, and conditional probabilities
that described the influences of the nodes upon each other.

For nodes that have no input, the prior belief that the node was in a given state must be estimated. For
example, with no foreknowledge, one might believe that there is a 90% chance that the developer of
safety-critical software will have development processes adequate to develop safe software. This is a prior
belief that is modified as evidence about the actual process and products produced is obtained.

For nodes that have inputs, the conditional probability that the node was in a given state (given the state
of the influencing nodes) must be estimated. For example, one might believe that a good development
process has a 99% chance of producing initial requirements without errors that cannot be detected and
corrected by V&V, but that this probability is only 90% for a poor development process.

For the observable nodes, the probability that a given value of the measure is observed (given the state of
the related node) needed to be estimated. For example, one might believe that if a developer has a good
development process and a good V&V process, there is a 99% chance that the developer’s processes will
be measured at a CMM level of 3 or above.

Estimation of model parameters required very careful definition of the possible states for each node.
Appendix A provides a detailed discussion of each node in the BBN model. The observable nodes were
thoroughly defined by the definition of the associated measure. The non-observable nodes were generally
defined as follows.

• Development Process Quality: The development process is good enough that it (1) does not introduce
safety-significant errors that are undetectable by a good V&V process and (2) can correct detected
errors without introducing new safety-significant errors. The implication is that the development
process does not introduce errors that are too numerous to be detected and corrected. It may also be
important to consider the possibility that the process introduces errors too subtle to be detected by the
V&V process. This is not modeled because there are no metrics to give evidence for the subtlety of
errors. Two states are modeled: true or false.

• V&V Process Quality: The V&V process is good enough to detect all safety-significant errors in a
reasonably good initial design output. The implication is that the V&V process can detect all such
errors if they are not too numerous. It may also be important to consider the skill of the V&V team
with respect to the development team. The V&V team must be capable of thoroughly understanding
the development team’s products. This is not modeled because there are no metrics to give evidence
for the V&V team’s skill. Two states are modeled: true or false.

• Complexity: Three states were modeled.

Very Low – The complexity of the design is such that even a relatively poor development and V&V
process are likely to produce a correct product.

Average – The complexity of the design is such that a good development and V&V process is needed
to produce a correct product.

Very High – The complexity of the design is such that even good development and V&V processes
will encounter problems developing a correct product.
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• Initial Product Quality: The initial design output is generally correct and complete with respect to the
requirements imposed by the previous phase. Any instances in which the previous phase requirements
are not met are detectable by a good V&V process and are correctable by a good development process.
The implication is that the errors are not too numerous to be detected and corrected. It may also be
important to consider the possibility that errors are too subtle to be detected by the V&V process. This
is not modeled because there are no metrics to give evidence for the subtlety of errors. Two states are
modeled: true or false.

• Final Product Quality: The final design output is correct and complete with respect to the requirements
imposed by the previous phase. Two states are modeled: true or false.

• Final Product Safety: The final design output is correct and complete with respect to the actual safety
requirements (note that these may be different from the documented safety requirements). Two states
are modeled: true or false.

• Reliability: The estimated probability of success in response to a safety demand. Four states were
modeled:
1. Reliability < 0.99

2. 0.99 ≤ Reliability < 0.999

3. 0.999 ≤ Reliability < 0.9999

4. Reliability ≥ 0.9999

Expert opinion was used to estimate (guess) the probability distribution functions for the model. This is
very straightforward for nodes with zero or one input. Only two values must be estimated. For one input
node, the two probabilities to be estimated are (1) the probability that the node is true given that the
previous node is true, and (2) the probability that the node is true given that the previous node is false.
The two other possible conditional probabilities, i.e., the conditional probabilities of the node being false,
are complements of the first two.

The probability of the final product quality node is conditional on three inputs: initial product quality,
development process quality, and V&V process quality. Eight sets of states (and eight complements) must
be estimated. The states were first ordered and then the probability for each state was estimated.

The conditional probabilities for many of the observable nodes were modeled as continuous distribution
functions. The BBN modeling tool that we used (Hugin Lite) supports only the use of Normal
distributions. In most cases, the distribution of measure values is likely to be more similar to a log normal
than normal. For example, if the final requirements document is correct, the probability that the function
point analysis measure is very near one should be very high, the probability that it is greater than one
must be zero (by definition of the measure), and the probability that it is at a specific value less than one
should drop off rapidly as the value of the measure decreases. Such distributions were simulated by a
truncated normal distribution.

Hugin uses the mean and variance of the normal distribution as inputs to describe the continuous
distributions. It proved difficult to visualize the meaning of the parameters, so a spreadsheet-based tool
was developed to assist in estimating the continuous distribution functions. This tool allowed
visualization of the functions represented by the mean and standard deviation values input to the model.

Figure 12 shows an example of the tool display. The left pair of charts shows the distribution estimated
given that the parent state is true. The top graph shows the estimated cumulative probability that the
measure exceeds value x given that the parent state is true. The bottom graph shows the shape of the
associated probability density function. The middle pair of graphs show the distributions given that the
parent state is false. In this case, the cumulative distribution function shows the probability that the
measure is less than x if the parent state is false. The right-hand pair of graphs shows the expected
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distribution of the metric over all software. This combines the two previous distributions using a prior
estimate of the probability that the parent state is true.

Estimators were asked to adjust the mean and variance estimates until the resultant distributions appeared
to be reasonable.
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Probability Distribution for Initial Function Point Analysis of Initial Requirements
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Figure 12. Tool for visualization of continuous distributions
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3.2.4  Use of the BBN Model

This section describes how data would be entered into the BBN model to estimate reliability for a specific
set of software. The BBN model is used by first changing the prior beliefs to the extent possible to make
these particular to the specific application under study. The user should be particularly careful to change
the prior beliefs in two nodes:

• Estimated reliability. The conditional probability table for this node represents the prior belief about
the reliability distribution function for the software. This distribution should be updated based on
information from other reliability prediction models such as the Project Initiation Reliability
Prediction. It is important to represent both tails of the distribution. Entering a prior probability of zero
for any of the reliability ranges will cause the model to always assign zero to the probability that the
reliability is within the stated range of reliability.

• System requirements: The probability table for this node represents the belief that the requirements
which are passed from the system developers to the software developers correctly and completely
represent the fundamental safety requirements. All subsequent estimates are heavily dependent upon
this estimate. The user should estimate this node based upon insights gained from examination of the
system requirements. The default value is a prior belief that there is a 99% chance that the system
requirements are correct and complete. A more formal means for estimating this prior belief is beyond
the scope of this study.

The user should consider changing the prior beliefs for other nodes which have no parents. These nodes
are:

• Development Process ( ): These nodes represent the initial belief that the development process is
good enough to produce initial phase products that can be perfected through the use of a good V&V
process. The default value for these nodes is that there is a 90% chance that the requirements
development process is good enough. The user should change this prior estimate if there is information
(e.g., previous experience with the development team) leading to the belief that the development
process is much better or worse than this. If the user believes that the default estimate is too high, it
may well be that the software does not pass the first test for safety related use and estimation of
reliability is a moot issue.

• V&V Process ( ): These nodes represent the initial belief that the requirements V&V process is good
enough to detect all safety-significant errors in the initial product (presuming that the products from
the previous phase are correct). The default value for these nodes is that there is a 90% chance that the
V&V process is good enough. The user should change this prior estimate similar to the prior estimate
of requirements development process quality.

• Complexity: There are several nodes that represent complexity of the software architecture, the
software design, and the code. These nodes represent the initial belief about the demands placed upon
the development and V&V teams by the characteristics of the design and code. Three levels of
complexity are modeled: high, medium, low. Low represents a design that is simple enough that
success might be expected from even a relatively poor quality development and V&V team. High
represents a design that is complex enough that very high quality teams are thought to be needed to
have confidence of success. Medium is in between. The default value for the complexity nodes is to
assume each of the three levels is equally likely.

The user may also consider changing the prior estimates for any of the other conditional probability tables
and the continuous distributions in the model. It is likely, for example, that the user may have some prior
judgement about the quality of the development and V&V processes for phases other than the
requirements phase. Estimates for other nodes may be changed if the user has organization or project
specific information that can be entered.
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Once the prior beliefs are changed, the model is run. The initial run displays the expected probability
about the state of each node based solely on the prior beliefs entered into the model. For the continuous
nodes, the run displays the expected distribution within which the software measures are expected to be
found.

As data from measures is obtained, the actual value of the measures is entered into the model and the
prediction about software reliability is updated. This use is illustrated in the following section.

3.2.5 BBN Model Evaluation and Comments

The BBN model provides a tool for combining measures of a variety of software characteristics into an
overall prediction of software reliability. There are numerous uncertainties, however, that need to be
considered when applying the model.

The model is, as all models are, incomplete. Substantial testing would be needed to identify the impact of
this and to determine where elements should be added to improve the model and where the model might
be simplified without harm. Testing should include validation of the individual phase models and the
overall model.

The structure of the model has not been validated. Review by other workers in the field may result in
structural changes that improve the model.

The conditional probability estimates that provide the parameters for the model are the opinion of a
limited set of researchers. The model may be improved by eliciting opinions from a larger body of
researchers. If consensus on the network model could be achieved, however, it could form the framework
for experimental and data collection programs designed to replace the expert opinion with measured
statistics.

The ability to perform sensitivity analysis is not provided. It would be very useful to know which
conditional probabilities and which evidence have the greatest affect on the final result. This information
could be used to focus research on improving the model and to provide information about the process and
product improvements that are believed to offer the greatest improvement to software reliability. Software
could be written to perform a sensitivity analysis on the model. Careful thought would be needed to select
the importance measures to be used. Sensitivity analysis will be complicated by the fact that a number of
model parameters and input measures interact with each other.

The degree to which the model parameters may be project-specific is unknown. A data collection program
as mentioned above would be useful in resolving this uncertainty.

The ability to predict overall software reliability has not been validated. While a single test of the method
is planned, limited testing will not be sufficient to provide confidence in the numerical results.

For the most part, these shortcomings are not unique to this BBN model. All existing software (and
indeed hardware) reliability prediction methods suffer these problems to some degree or another. The real
test for this model will be whether it is a more or less accurate predictor of software reliability when
compared to other models.

Regardless of any shortcomings as a reliability predictor, the BBN model represents the process for
reasoning about software quality recommended by the Standard Review Plan. The model uses defined
software measures as the basis for evaluation rather than the more general acceptance criteria outlined in
the SRP’s BTP-14. Therefore, the model provides a more transparent, objective, and repeatable method
for making decisions about software quality than the review process of BTP-14. BTP-14, however, is
strengthened by its consideration for many more attributes of software products and processes than are
addressed by the software measures incorporated into the BBN model. There is no reason why findings
from reviews conducted using BTP-14 could not be incorporated into the BBN model to provide a quality
evaluation tool that combines the strengths of both methods. NRC has developed a draft software review
checklist to support evaluations according to BTP-14. Coupling the results of evaluations using the
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checklist tool as a further source of evidence for the BBN model would be worth consideration as a means
to improve tool support for NRC reviewers.

3.3 Combinatorial Model

3.3.1 Introduction to the Rome Laboratory Model

To improve software reliability, Rome Laboratory developed a guide book entitled “Methodology for
Software Reliability Prediction.”14 It is used by Air Force Acquisition Offices to specify achievable and
measurable reliability goals in terms of fault density and failure rate and evaluate progress toward those
goals at key project milestones. To develop the software reliability prediction and estimation
methodology in the guidebook, Rome Laboratory analyzed 59 projects. The result was declared to be
useful to any project with high reliability requirements that can be matched to the generic applications
used in the guide.

In its software reliability prediction task, the guidebook utilized the following model to predict fault
density (Rp) in the source software:

Rp = A*D*S1*S2,

where, A, D, S1, S2 are input metrics representing initial estimated fault density, the development
environment quality factor, the requirement and design quality factor, and the implementation quality
factor. At project initiation, reliability is predicted using only the first factor (A). During requirements and
design phases, the model user can collect data that allows the first three factors to be used. Data for the
fourth parameter becomes available only after coding. The software reliability model is analogous to
hardware reliability models developed for MIL-HDK-21715, in which a base failure rate is established for
different use environments and this base failure rate is adjusted by factors that account for differences in
materials, design characteristics, stress, and production quality.

For A, the initial estimate of reliability, Rome Laboratory developed an average or baseline fault density
by analyzing the observed fault density for a number of projects. Rome Laboratory has estimated this
baseline fault density based upon the type of application the subject software represents and has provided
methods for converting fault density estimates to reliability estimates. This is used as a starting point for
the prediction. The development environment, design, and implementation quality factors can each
increase or decrease the reliability estimate by a factor of 2. Thus the Rome Laboratory model can adjust
the base reliability estimate over a span of about 1.5 orders of magnitude.

For D, the development environment metric, the development environment is given in the guidebook into
three categories: organic, semi-detached, and embedded. The D value is assigned by the user to one of
these three categories using the following definitions.

• Organic — Software is being developed by a group that is responsible for the overall application.

• Semi-detached — The software developer has specialized knowledge of the application area, but is not
part of the sponsoring organization.

• Embedded — Software that frequently has very tight performance constraints being developed by a
specialist software organization that is not directly connected with the application.

For S1, the requirements and design representation metric, the value is given in the guidebook in terms of
a product of three factors: S1 = SA*ST*SQ. SA, ST and SQ represent anomaly management, traceability
and quality review results respectively.

For S2, the software implementation metric, the value was given in term of a product of four factors:
S2 = S*SM*SX*SR. SL, SM, SX and SR represent factors from language, modularity, complexity and
standard review.
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The S factors are calculated based upon selected metrics, surveys of software development processes,
surveys of software products, and the answers to checklist questions posed by the Rome Laboratory
method. The quality factors are calculated based upon the number of checklist questions answered in the
desired way.

The model is used to estimate fault density in the final software. Fault density can be transformed into a
predicted reliability expressed as a failure rate. The Rome Laboratory guide described the following three
approaches as ways to perform this transformation:

• Using established empirical values from a table

• Theoretically based transformation function

• Using in-house data to derive an empirical relationship

3.3.2  Combinatory Method Based Upon the Rome Laboratory Model

The Rome Laboratory model was used a basis for a combinatory estimate of software reliability. The
proposed model uses a number of assumptions implicit in the Rome Laboratory model and software
reliability measures identified in Task 1. The assumptions implicit in the Rome Laboratory model are:

1. The base fault density is known as a result of empirical examination of a number of software projects,
or from some other source.

2. Fault density can be converted to failure rate.

3. The type of the development environment and the quality of the design and code for a particular
software product can each, independently improve or reduce the base failure rate by a factor of at most
2.

4. The model postulated in this project bases the factors D, S1, and S2 upon the software engineering
measures identified in Task 1.

Software reliability measures identified in Task 1 are used for the factors D, S1, and S2. In addition to the
assumptions identified above, the following assumptions are made:

1. The value of software engineering measures and fault density can be related by some non-linear
function.

2. The relationships between metrics and fault density obey a “law of diminishing returns and
diminishing penalties.”  That is, at some point, improvements in the values of a metric do not indicate
that one should expect a corresponding reduction in fault density and that below some point,
degradation in the value of a metric do not indicate that one should expect a corresponding increase in
fault density.

3. Very poor results against any one measure indicates that one should expect a relatively high fault
density. Correspondingly, all measures must be relatively high in order for the model to calculate
relatively low fault densities.

4. Development environment quality is a more useful environment measurement than the development
environment type as defined in the Rome Laboratory model.

3.3.3  Incorporation of Measures from Task 1 into the Combinatorial Model

Developing quality factors based upon the measures identified in Task 1 involved the following steps:

Step 1 — Select appropriate measures based on the work done in Task 1.

These measures are: requirements traceability, design defect density, reviews, inspections and
walkthroughs, minimal unit test case determination, man-hours per major defect detected, K-out-of-n
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model, Markov reliability model, cyclomatic complexity, cause & effect graphing, function point
analysis, cumulative failure profile, independent process reliability, and code defect density.

As discussed in Section 3.2.2, minimal unit test case determination and cyclomatic complexity are the
same measure and so treated. The modeling methods (K-out-of-n and Markov reliability model) are
not used because they are not measures. Modular test coverage, the capability maturity model measure,
and modular test coverage replaced these deleted measures to improve the representation of process
measures in the model.

Step 2 — Develop functions to relate individual metrics to quality factors.

Generally, two kinds of relationships were assumed for the selected measures. For some measures
(e.g., man-hours per major defect), higher values indicate better software. For some others (e.g., code
defect density), higher values indicate worse software. The functions represent and quantify these
relationships between the measures selected and quality. An assumption is that these measures are
affected a law of diminishing returns or penalties as described in Section 3.3.2. These relationships are
described by an “s”-shaped curve for measures where increases in the measures’ value indicate an
increase in quality. A reverse “s” or “z”-shaped curve represents this relationship when decreases in
the value of a measure indicate increased quality. During the process to develop these functions,
practical bound values must be assigned to the metrics with infinite bounds, based on their
characteristics and experience. For example, the measure man-hours per major defect can go from zero
to infinity; however, experience has shown that values much greater than 5 are not encountered in
successful development processes.

Step 3 — Combine metric quality factor into process and product quality factors that replace the D and S
parameters of the Rome Laboratory model.

Although the measures were selected based on ranking, which indicates they have a different priority
in suggesting software reliability, they are considered to be in the same order since the ranking
indicates only very slight differences.

Step 4 — Convert the defect density to a failure rate using one of the conversion methods described by
Rome Laboratory.

3.3.4  Detailed Description of the Combinatorial Model

3.3.4.1  Base Reliability

As described before, the Rome Laboratory model uses an initial reliability estimate based on the
application type. The initial reliability estimate might be based upon other measures such as failure rate,
reliability prediction for operating environment, or run reliability described in the Task 1 report.

Notice that this combinatory method deals with fault density. Measures results that are not expressed as
fault densities (e.g., failure rate measures) require transformation to fault density to use the factors
described here.

3.3.4.3 Selection of Measures for Use in the Model

The task 1 study identified the following measures as the most promising inputs for reliability estimation,
independent of life-cycle phase:  Requirements traceability, design defect density, Reviews, inspections
and walkthroughs, Minimal unit test case determination, Man-hours per major defect detected, K-out-of-n
model, Markov reliability model, Cyclomatic complexity, Cause & effect graphing, Function point
analysis, Cumulative failure profile, Independent process reliability, and Code defect density.

These measures were evaluated for use in the combinatorial model. Some measures proved unsuitable for
use because they were duplicates of other measures, some proved unsuitable because they are not actually
measures, some needed to be modified to reduce dependency on factors that are not directly related to
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quality (e.g., program size). A relationship also had to be established between the measures identified and
the model’s factors for development process quality, requirements and design process quality, and
implementation process quality. Some measures relate to more than one of these.

Once this was completed, it was noted that development process measures were not adequately
represented. Therefore, the list of measures identified in task 1 was re-examined to identify measures that
could be used in the combinatorial model. Table 3 shows the measures used in the combinatorial model
and the disposition of the measures identified by the task 1 study.

Table 3 Measure Use in the Combinatorial Model

Task 1 Measure Measure as Used in
Combinatorial Model

Use Notes

Requirements
traceability

Used directly Indication of
requirements and design
quality

Design defect density Used directly Indication of
requirements and design
quality

Reviews, inspections
and walkthroughs

Used directly Indication of
development process
quality

Minimal unit test case
determination

Not used This measure is the
same as cyclomatic
complexity, which is
used in the model.

Man-hours per major
defect detected

Two forms of the
measure are used:

Man-hours per major
defect in requirements
and design.

Man-hours per major
defect in
implementation.

Indication of
development process
quality

Indication of
requirements and design
quality

Indication of
implementation quality

As a indication of
development process
quality a lower number
indicates higher quality.

As an indication of
requirements and design
or implementation
quality a higher number
indicates higher quality.

K-out-of-n model Not used This item is not used in
the model, it is a
modeling technique, not
a measure

Markov reliability
model

Not used This item is not used in
the model, it is a
modeling technique, not
a measure
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Task 1 Measure Measure as Used in
Combinatorial Model

Use Notes

Cyclomatic complexity Used directly Indication of
implementation quality

Cause & effect graphing Used directly Indication of
requirements and design
quality

Function point analysis Two forms of the
measure are used:

Function point analysis
for requirements

Function point analysis
for design

Indication of
requirements and design
quality

Cumulative failure
profile

Mean Time to Next
Failure is used instead

Indication of
development process
quality

Independent process
reliability

Not used This item is not
included in the model, it
is a modeling technique,
not a measure

Code defect density Used directly Indication of
implementation quality

Added measure Capability Maturity
Model

Indication of
development process
quality

Added measure Requirements Change
Requests per
Requirement

Indication of
development process
quality

Original measure is
modified to be a change
density in order to
reduce influence of
requirements
complexity.

Added measure Fault number phases Indication of
development process
quality

Original measure is
modified to be a change
time parameter from
days to phases to reduce
influence of project
specific scheduling.
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Task 1 Measure Measure as Used in
Combinatorial Model

Use Notes

Added measure Graph-theoretic static
architecture

Indication of
development process
quality

Added to include
consideration of
architectural complexity

Added measure Modular test coverage Indication of
development process
quality

3.3.4.2  Transformation of Software Measures to Quality Factors

Two functional shapes, “s” and “z” are used to convert the task 1 measures into quality factors. The “s”
shaped function is then defined by a linear model defined by 4 points:

1 The lower practical bound of the measure (x0),

2 The upper practical bound of the measure (xh),

3 A upper “inflection point” (xu) the value of the measure above which quality is believed to be very
high and further improvements in the measure are believed to indicate only a small improvement in
quality.

4 A lower “inflection point” (xl) the value of the measure below which quality is believed to be very
low and further reductions in the measure are believed to indicate only a small decrease in quality.

The inflection points are taken be the points above which increase measures to the maximum or minimum
practical value only indicate a 5% improvement or 5% reduction in quality.

The “z” shape function is similarly defined except that the upper inflection point is the point relates to
lower quality and the lower inflection point relates to high quality. The two quality functions are then
defined as follows.

s-function z-function

f = 0.05(x-x0)/xlfor x≤xl

f = 0.05 + 0.9 (x-xl)/(xu-xl)for xl<x<xu

f = 0.95 + 0.05 (x-xu)/(xh-xu)for x ≥ xu

f = 1 - 0.5 (x-x0)/xlfor x≤xl

f = 0.95 - 0.9 (x-xl)/(xu-xl)for xl<x<xu

f = 0.05 - 0.05 (x-xu)/(xh-xu)for xu≥x

Consideration of two measures, code defect density and man-hours per major defect illustrate the
definition of the “s” and “z” curves.

Longer times to detect defects tend to indicate higher quality of software products when the man-hours
per major defect detected measure is used as an indication of product quality. Therefore, the relationship
between this measure and quality is modeled as a “s” function. Experience has shown that this measure
typically falls between 3 and 5 man-hours for major defect detected, and that a value of less than 3
indicates very poor product quality17 [IEEE982.1]. The defining points for this function are therefore
taken as follows.

Lower practical bound– 0 mh/major defect; for very poor products error detection can be very
rapid.
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Upper practical bound– 10 mh/major defect; this is taken as twice the maximum normally
encountered.

Upper inflection point  — 5 mh/major defect; based upon experience that values greater than this
either indicate very good products or very poor V&V processes

Lower inflection point — 3 mh/major defect; based upon experience that values less than this
indicate poor products.

The resulting quality function is shown in Figure 13.
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Figure 13. Quality function

Lower than expected defect densities indicate higher quality of software products. Therefore, the
relationship between this measure and quality is modeled as a “z” function. Experience has shown that the
industry average defect density is approximately 5 defects per thousand lines of source code. The defining
points for this function are therefore taken as follows.

Lower practical bound– 0 defects/klosc; zero may be attainable for some very simple software.

Upper practical bound– 20 defects/klosc; this is taken as four times the industry average. Values
above this probably indicate that the development team and development process is unsuitable for
the creation of safety critical software.

Upper inflection point  — 10 defects/klosc, this is taken as twice the industry average and all
other factors being equal should result in a predicted defect rate of approximately two times the
base.

Lower inflection point — 2.5 defects/klosc, this is taken as half the industry average and all other
factors being equal should result in a predicted defect rate of approximately one-half of the base.

The resulting quality function is shown in Figure 14.
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Figure 14. Quality function

Appendix B gives the quality function parameters for each measure.

3.3.4.3 Transformation of Quality Factors into Model Parameters

Three parameter of the Rome Laboratory model are to be calculated:

D — The development environment quality factor,

S1 — The requirements and design quality factor, and

S2 — The implementation quality factor.

For consistency with the Rome Laboratory model the function used to combine quality factors into a
single parameter must equal 2 when all of the quality factors equal 0 an must equal 0.5 when all of the
quality factors equal 1. Furthermore, all quality factors should be near 1 in order for the result to approach
0.5, and any quality factor being near 0 should cause the result to be near two. This is a restatement of
assumption number 3 in Section 3.3.2.

A combination equation that fits these criteria is:
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Qi
 are the individual quality factors related to a given model parameter and n is the number of quality

measures considered in the parameters. When any quality factors is 0 this reduces to X=2 and when all
quality factors are 1, X=2/22 = 0.5. Figure 15 illustrates the shape of this function for the combination of
two quality factors.
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For the calculation of D there are 8 Qi for the calculation of S1 there are 7 and for the calculation of S2
there are 3. Appendix B gives the specific components of this calculation.

Figure 16 illustrates the combination of the “z”- and “s”-shaped curves above using this method. This
would be the function for the S2 parameter, for example, if only two quality factors (man-hours per major
defect and defect density) are used.
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Figure 16. Combination of the “Z”- and “S”-shaped curves
3.3.4.4  Transformation of Fault Density to Failure Rate

As the initial reliability in this model is given in fault density, the result needs to be transformed into
failure rate to be used in more sophisticated models like system block model.

Three transformation methods are given in the Rome Laboratory guidebook. One method uses a
transformation ratio based on different application types. The guide gives the transformation ratio of 3.8
for process control software which is most representative of nuclear power plant applications.

Then the predicted software reliability in failure rate can be obtained as:

Rpf = Rp × 3.8
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4. TEST PLAN

Both models require extensive testing to validate their suitability for predicting software reliability. The
initial project plan envisioned a single test of the reliability models produced by this project. A single
validation test cannot prove model validity, but it could give confidence that the models are not invalid.
Any validation test case needs to have the following characteristics.

• The software owner must be willing to make information available for this project.

• Information available must include operational reliability data.

• Information on all or most of the software engineering measures used in the model must be available
or reproducible from inspection of the available information.

• The owner must consider the information provided to be non-proprietary so that others can reproduce
the testing.

• The information must be available within the schedule constraints of the project.

LLNL explored available test cases for more than two years and had no success locating a case that met
all of the above criteria. One test case is available using an LLNL proprietary engineering code.
Reasonably good information is available regarding requirements and validation test phases; operational
reliability is available for several tens of thousands of runs, but little information is available for the
design and coding phases. Nevertheless, both methods would be used to predict software reliability; the
prediction would be compared to actual experience.

Validation will also be conducted by confirming that both the BBN and combinatorial models behave as
expected for variation of individual measures. The general acceptance criteria for this test are:

1. Initial estimate should be between .99 and .999. This represents a range of reliability assertions that we
would be willing to accept with very little evidence.

2. No change to any single measure should cause a large change to the prior belief in reliability or the
prior belief in the quality of a given phase.

3. The variation of any given measure should produce a reasonable variation in the probability of the
states for the daughter node, the probability of the states for the quality of the final product for the
associated lifecycle phase, and the overall reliability prediction.

4. Setting all measures to the good should not cause the model to predict perfect reliability nor perfect
quality for a given phase. A fundamental belief is that no human design system will ever be perfect.

5. Setting all measures to the bad should not produce a reliability prediction much less than 0.99. Release
of software much less reliable than this seems incredible.

Conformance with the first criterion would be determined when the model is first run. Each measure
would be varied individually to confirm that criteria 2 and 3 are met. All measures would be varied
together to confirm compliance with criteria 4 and 5.

More complete testing would involve testing the models to evaluate simultaneous variations of multiple
parameters. Such testing is beyond the scope of this project.
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5. CONCLUSIONS

Two possible reliability prediction models were developed using the candidate measures that Task 1
identified as plausible indicators of software reliability. Both models depend upon knowing the
relationships between the selected software measures and software reliability. These relationships are
unknown. In the absence of details about these relationships the proposed models reflect the thought
processes behind accepted methods for subjectively assessing software quality. The measures that were
identified by task 1 are used to estimate the software process and product attributes considered in these
subjective assessments. This process produced models that produce plausible estimates of software
reliability that behave as expected as input data are varied. While the models are not yet useful for making
numerical estimates of reliability, they might offer a method for comparing the reliability of different
software elements.

A more credible model of these relationships could be developed if sufficient experience data were
available to support description of the relationship between reliability and the measures. Previous efforts
to collect such data have been unsuccessful largely because developer organizations generally do not
collect the information that is needed, and when they do, are often reluctant to release detailed
information about failures and internal measures. Furthermore, measures are not always used consistently
from organization to organization. Consequently, collection of data to populate these models would
require careful operational definition of the measures.

Further development of the BBN model would require developing a method to determine the state of the
non-observable modes independent of the measures used in the model. Specific examples could then be
studied to probabilistically describe the relationship between the non-observable nodes and the software
measures represented by observable nodes. This would allow the development of probably distributions
describing the node relationships. It is also possible that such an effort would also reveal the need for
modifications to the influence diagram structure. Studying each node in-turn would result in a more
defendable model. One might start with one phase and build the model up by a series of data collection
and testing on a phase-by-phase basis.  Such a study would require collecting information for
approximately 200 probability distributions. Validation of the model would require use on many tens of
test cases.

Although neither model should be considered a credible method for reliability prediction at this time, they
both offer possible approaches that could be further developed. Of the two, the BBN approach appears to
be the most promising because it expresses the relationships between the measures and reliability in terms
of simpler relationships that are more amenable to study and discussion. Further development of the BBN
model should involve developing a wider consensus on the structure and content of the model, followed
by determination of the conditional probability distributions for the eventual structure. Developing these
relationships from experience or test data may not be practical as discussed above; however, more
thorough and structured expert elicitation of the distributions may be sufficient to develop a useable
model.

Although many obstacles remain in the path of developing these methods into a reliability prediction
method, the BBN approach appears to offer great promise as a quality assessment tool. The BBN model
presented in this report essentially models the thought process of an auditor applying the review guidance
of the Standard Review Plan. Modeling the process with a BBN makes the evaluation process more
transparent and repeatable. Transparency comes in the form of explicitly stating and quantifying the
relationships between the reviewers observations and conclusions. This opens up the thought process and
detailed judgements to review, criticism, and debate which will lead eventually to improvement of the
process. It would also allow maintaining records of review data, review conclusions, and computer
system reliability that over time could be used to base the modeled relationships on data rather than on
judgement.
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The BBN model also offers a method for combining judgements from qualitative assessments (e.g.,
review according to BTP-14) with quantitative measures to improve the NRC software review process.
This path appears to be a viable route to developing assessment tools that can be useful to the NRC staff.
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APPENDIX A
DETAILS OF THE BAYESIAN BELIEF NETWORK MODEL

Requirements Phase Model

Name: System Requirements Safety

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: System Requirements Definition

Meaning: Quality of the system requirements with respect to the fundamental plant
safety requirements. The node models two states:

1) Good – All fundamental plant safety requirements are completely and
correctly stated in the system requirements document.

2) Poor – One or more fundamental plant safety requirements omitted or
incorrectly stated in the requirements document.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably
indicate a failed development process.

Use: Influences safety of the software requirements

Comments: This node models the influence of errors outside of the software
development process upon software correctness. It accounts for the fact
that software that is correct with respect to the input requirements may
still not be incorrect with respect to the actual requirements. The prior
estimate should be based upon review of the quality of the system
development process, the design bases, and the specifications for
integrated hardware / software components.

Reference: IEEE 982

Probability Table

Correct 0.99

Incorrect 0.01
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Name: Requirements Safety

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Requirements

Meaning: Quality of the requirements with respect to the fundamental plant safety
requirements. The node models two states:

1) Good – All fundamental plant safety requirements are completely, and
correctly stated in the requirements document.

2) Poor – One or more fundamental plant safety requirements omitted or
incorrectly stated in the requirements document.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences safety of the software design.

Comments:

Reference:

Probability Table

System
Requirements
Safety

Correct Incorrect

Final
Requirements

Good Poor Good Poor

Safe 1 0 0 0

Not Safe 0 0 0 0
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Name: Initial FPA R

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Function point analysis quality measure on initial draft of requirements.
Measures 1 minus defect density per function point. It is assumed that both
safety-significant and non-safety-significant errors are counted as they are
both indicators of the overall quality of the requirements.

Modeled Range: FPA 0.8 to 1. An initial FPA < 0.8 probably indicates a failed development
process.

Use: Evidence of the quality of the initial requirements.

Comments

Reference: IEEE 982

Probability Distribution for Cause & Effect Analysis of Initial Requirements
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Name: Initial Requirements

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the initial requirements. The node models two states:

1) Good – All errors in the initial requirements are detectable by a good
V&V process and are correctable by a good development process. The
implication is that the requirements errors are not too numerous to be
detected and corrected. It may also be important to consider the
possibility that errors are too subtle to be detected by the V&V process.
This is not modeled because there are no metrics to give evidence for
the subtlety of errors.

2) Poor – The initial requirements contain some errors that cannot be
detected by a good V&V process or corrected by a good development
process. State 2 is the complement of state 1.

The probability of the initial requirements being in these states is
conditioned by the quality of the development process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the final requirements.

Evidence of the quality of the development process.

Comments:

Reference: IEEE 982

Probability Table

Development Process Good Poor

Good 0.99 0.9

Poor 0.01 0.1
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Name: Development Process R

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the requirements development process. The node models two
states:

1) Good – The requirements development process is good enough that it
does not introduce safety-significant errors that cannot be detected by a
good V&V process and that it can correct detected errors without
introducing new safety-significant errors. The implication is that the
development process does not introduce requirements errors that are too
numerous to be detected and corrected. It may also be important to
consider the possibility that the process introduces errors that are too
subtle to be detected by the V&V process. This is not modeled because
there are no metrics to give evidence for the subtlety of errors.

2) Poor – The requirements development process is expected to produce
errors that cannot be detected by a good V&V process or corrected by a
good development process. State 2 is the complement of state 1.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the initial and final requirements.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: Requirements Change Requests

Type: Continuous

Observable: yes

Phase where Measurable: All phases

Phase that it tells about: Requirements

Meaning: Fraction of requirements changed. This measures the density of change
requests initiated during the software development lifecycle. Changing a
large fraction of the requirements indicate a poor development process that
is being driven by unstable requirements. Many change requests may also
indicate a poor development process that resulted in errors that are found
later in the lifecycle. This later interpretation is not included in the model
because there are other, more direct indicators of requirements errors
(function point analysis, total defects, cause and effect analysis, and fault
number days).

Modeled Range: 0 to 2 change requests per requirements.

Use: Evidence of the quality of the development process.

Comments: The more typically used measure is total number of requirement changes. In
this the model the density of requirement changes is used to help account
for differences between projects of different sizes.

The modeled range accounts for the fact that in some processes certain
requirements may be changed many times.

Reference: Moller 1993, Jones 1991
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Name: CMM Level R

Type: Discrete

Observable: Yes

Phase where Measurable: All

Phase that it tells about: Requirements

Meaning: Software Capability Maturity Model measure for the requirements phase.
Measures the predictability, effectiveness, and control of a project software
processes. Two states are modeled:

1) CMM ≥ Level 3 — The software development process is defined,
documented, and standardized.

2) CMM < Level 3 — The software development process is not defined.
Success may still be possible based upon the quality of individual
efforts or informal repetition of past successful practices.

Modeled Range: Probability of state 0 to 1.

Use: Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Comments: CMM typically describes the quality of the overall process regardless of
phase. The model, however, includes the CMM measure separately for each
phase. This allows for the possibility that the process maturity may change
(hopefully improve) during the development process. This assumption also
simplifies the modeling.

The model could easily separately consider each of the five states described
by the CMM measure. Currently, no significant benefit is seen from finer
modeling.

Reference: Paulk, Curtis, Chrissis, and Weber 2/1993, Paulk, Weber, Garcia, Chrissis,
and Bush 1993, Paulk, Curtis, Chrissis, and Weber 7/1993

Probability Table

V&V Good Poor

Development
Process

Good Poor Good Poor

< Level 3 0.01 0.95 0.95 0.99

≥ Level 3 0.99 0.05 0.05 0.01
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Name: V&V R

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the requirements verification and validation process. The node
models two states:

1) Good – The requirements V&V process is good enough to detect all
safety-significant errors in a reasonably good initial requirements
document. The implication is that the V&V process can detect all
requirements errors they are not too numerous. It may also be important
to consider the skill of the V&V team with respect to the development
team. The V&V team must be capable of thoroughly understanding  the
development team’s products. This is not modeled because there are no
metrics to give evidence for the V&V team’s skill.

2) Poor – The requirements V&V process is not good enough to detect all
safety-significant errors in a reasonably good initial requirements
document. State 2 is the complement of state 1.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed V&V process.

Use: Influences the quality of the final requirements.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: mh/Major Defect R

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Man-hours or V&V effort per major defect detected in the requirements.
The measure is applied to new code development. A low number (less than
3 hours) indicates potential problems with the requirements. A high number
(greater than 5 hours) indicates potential problems with the V&V process.

Modeled Range: Man-hours between major defect between 0 and 10 hours. A measure
greater than 10 indicates either an extremely good initial requirements
document or a failed V&V process. If it can be determined that the former is
the case, the state of the requirements document may be directly entered
into the model, thus bypassing this measure.

Use: Evidence of the quality of the initial requirements document.

Evidence of the quality of the requirements V&V process

Comments:

Reference: IEEE 982
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Name: Final Requirements

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the final requirements. The node models two states:

1) Good – All safety-significant requirements from the system
requirements phase are completely, and correctly addressed in the
requirements document.

2) Poor – One or more safety-significant requirements from the system
requirements phase is omitted or incorrectly addressed in the
requirements document.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the safety of the requirements.

Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Evidence of the quality of the initial requirements.

Comments:

Reference: IEEE 982

Probability Table

Initial
Require
ments

Good Poor

Develop
ment
Process

Good Poor Good Poor

V&V Good Poor Good Poor Good Poor Good Poor

Good 0.98 0.89 0.69 0.49 0.89 0.81 0.63 0.45

Poor 0.02 0.11 0.31 0.51 0.11 0.19 0.37 0.55
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Name: Final FPA R

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Function point analysis quality measure on final requirements. Measures 1
minus defect density per function point. It is assumed that both safety-
significant and non-safety-significant errors are counted as they are both
indicators of the overall quality of the requirements.

Modeled Range: FPA 0.9 to 1. An initial FPA < 0.9 probably indicates a failed development
process.

Use: Evidence of the quality of the final requirements.

Comments

Reference: IEEE 982
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Name: Fault Number Phases R

Type: Continuous

Observable: Yes

Phase where Measurable: Architectural Design

Detailed Design

Implementation

Validation

Operation

Phase that it tells about: Requirements

Meaning: The total number of phases that faults remain in the requirements. For this
model it is presumed that the measure is after the requirements phase is
complete since the number of days it takes to remove a fault within a phase
is likely more characteristic of the process structure than the process quality.
Consequently, this measure is not germane to initial requirements. If the
V&V process is good, this measure indicates the subtlety of errors. If the
V&V process is poor, this measure reflects on the quality of the V&V
process and the quality of the final product.

Modeled Range: 0 to 1000 fault-phases

Use: Evidence of Development Process Quality

Evidence of V&V Process Quality

Comments: Possibly the distributions associated with this node should be dependent
upon the phase in which the measurement is taken.

The IEEE 982 measure is fault number days. The measure used in this
model substitutes phase for days as the duration measure.
This will help make the measure less dependent upon project size and
staffing.

Reference: IEEE 982
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P(metric)<X
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Name: Initial Cause & Effect

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Measures the percentage of unambiguous requirements in the initial
requirements document. Some ambiguities may result from incomplete
graphing of cause and effect relationships, so this is also a measure of
completeness.

Modeled Range: 0 to 1

Use: Evidence of initial requirements quality.

Comments:

Reference: IEEE 982
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Name: Rev., Insp, & Wthroughs R

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Measures the percentage of different types of V&V methods used in the
requirements phase.

Modeled Range: 0 to 1

Use: Evidence of V&V process quality

Comments:

Reference: Moller 1993, Freedman 1990, Redmill 1988
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Name: Final Cause & Effect

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Measures the percentage of unambiguous requirements in the initial
requirements document. Some ambiguities may result from incomplete
graphing of cause and effect relationships, so this is also a measure of
completeness.

Modeled Range: 0 to 1

Use: Evidence of initial requirements quality.

Comments:

Reference: IEEE 982
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Architectural Design Phase Model

Name: Initial FPA A

Type: Continuous

Observable: Yes

Phase where Measurable: Architecture

Phase that it tells about: Architecture

Meaning: Function point analysis quality measure on initial draft of architecture.
Measures 1 minus defect density per function point. It is assumed that both
safety-significant and non-safety-significant errors are counted as they are
both indicators of the overall quality of the architecture.

Modeled Range: FPA 0.8 to 1. An initial FPA < 0.8 probably indicates a failed development
process.

Use: Evidence of the quality of the initial architecture.

Comments

Reference: IEEE 982
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Name: Initial Architecture

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the initial architecture. The node models two states:

1) Good – All errors in the initial architecture are detectable by a good
V&V process and are correctable by a good development process. The
implication is that the errors are not too numerous to be detected and
corrected. It may also be important to consider the possibility that errors
are too subtle to be detected by the V&V process. This is not modeled
because there are no metrics to give evidence for the subtlety of errors.

2) Poor – The initial architecture contain some errors that cannot be
detected by a good V&V process or corrected by a good development
process. State 2 is the complement of state 1.

The probability of the initial architecture being in these states is conditioned
by the quality of the development process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the final architecture.

Evidence of the quality of the development process.

Comments:

Reference: IEEE 982

Probability Table

Development Process Good Poor

Good 0.99 0.9

Poor 0.01 0.1
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Name: Development Process A

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the architecture development process. The node models two
states:

1) Good – The architecture development process is good enough that it
does not introduce safety-significant errors that cannot be detected by a
good V&V process and that it can correct detected errors without
introducing new safety-significant errors. The implication is that the
development process does not introduce errors that are too numerous to
be detected and corrected. It may also be important to consider the
possibility that the process introduces errors that are too subtle to be
detected by the V&V process. This is not modeled because there are no
metrics to give evidence for the subtlety of errors.

2) Poor – The architecture development process is expected to produce
errors cannot be detected by a good V&V process or corrected by a
good development process. State 2 is the complement of state 1.

The probability of the initial architecture development process being in
these states is conditioned by the complexity of the architecture. A more
complex design is likely to require a better development process to produce
adequate initial and final design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the initial and final architecture.

Comments: 

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: CMM Level A

Type: Discrete

Observable: Yes

Phase where Measurable: All

Phase that it tells about: Architecture

Meaning: Software Capability Maturity Model measure for the architectural design
phase. Measures the predictability, effectiveness, and control of a project
software processes. Two states are modeled:

1) CMM ≥ Level 3 — The software development process is defined,
documented, and standardized.

2) CMM < Level 3 — The software development process is not defined.
Success may still be possible based upon the quality of individual
efforts or informal repetition of past successful practices.

Modeled Range: Probability of state 0 to 1.

Use: Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Comments: CMM typically describes the quality of the overall process regardless of
phase. The model, however, includes the CMM measure separately for each
phase. This allows for the possibility that the process maturity may change
(hopefully improve) during the development process. This assumption also
simplifies the modeling.

The model could easily separately consider each of the five states described
by the CMM measure. Currently, no significant benefit is seen from finer
modeling.

Reference: Paulk, Curtis, Chrissis, and Weber 2/1993, Paulk, Weber, Garcia, Chrissis,
and Bush 1993, Paulk, Curtis, Chrissis, and Weber 7/1993

Probability Table

V&V Good Poor

Development
Process

Good Poor Good Poor

< Level 3 0.01 0.95 0.95 0.99

≥ Level 3 0.99 0.05 0.05 0.01
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Name: V&V A

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the architecture verification and validation process. The node
models two states:

1) Good – The architecture V&V process is good enough to detect all
safety-significant errors in a reasonably good initial design. The
implication is that the V&V process can detect all errors they are not too
numerous. It may also be important to consider the skill of the V&V
team with respect to the development team. The V&V team must be
capable of thoroughly understanding  the development team’s products.
This is not modeled because there are no metrics to give evidence for
the V&V team’s skill.

2) Poor – The V&V process is not good enough to detect all safety-
significant errors in a reasonably good initial architectural design. State
2 is the complement of state 1.

The probability of the initial architecture V&V process being in these
states is conditioned by the complexity of the architecture. A more
complex design is likely to require a better V&V to detect errors in the
initial.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed V&V process.

Use: Influences the quality of the final architecture.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: mh/Major Defect A

Type: Continuous

Observable: Yes

Phase where Measurable: Architectural Design

Phase that it tells about: Architectural Design

Meaning: Man-hours or V&V effort per major defect detected in the architecture. The
measure is applied to new code development. A low number (less than 3
hours) indicates potential problems with the requirements. A high number
(greater than 5 hours) indicates potential problems with the V&V process.

Modeled Range: Man-hours between major defect between 0 and 10 hours. A measure
greater than 10 indicates either an extremely good initial requirements
document or a failed V&V process. If it can be determined that the former is
the case, the state of the architecture may be directly entered into the model,
thus bypassing this measure.

Use: Evidence of the quality of the initial architecture.

Evidence of the quality of the architecture V&V process

Comments:

Reference: IEEE 982
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Name: Final Architecture

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the final architecture. The node models two states:

1) Good – All safety-significant requirements from the system
requirements phase are completely, and correctly addressed in the
system architecture.

2) Poor – One or more safety-significant requirements from the system
requirements phase is omitted or incorrectly addressed in the system
architecture.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the safety of the architecture.

Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Evidence of the quality of the initial architecture.

Comments:

Reference: IEEE 982

Probability Table

Initial
Architec
ture

Good Poor

Develop
ment
Process

Good Poor Good Poor

V&V Good Poor Good Poor Good Poor Good Poor

Good 0.98 0.89 0.69 0.49 0.89 0.81 0.63 0.45

Poor 0.02 0.11 0.31 0.51 0.11 0.19 0.37 0.55
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Name: Final FPA A

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements

Phase that it tells about: Requirements

Meaning: Function point analysis quality measure on final architecture. Measures 1
minus defect density per function point. It is assumed that both safety-
significant and non-safety-significant errors are counted as they are both
indicators of the overall quality of the design.

Modeled Range: FPA 0.9 to 1. An initial FPA < 0.9 probably indicates a failed development
process.

Use: Evidence of the quality of the final requirements.

Comments

Reference: IEEE 982
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Name: Fault Number Phases A

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Implementation

Validation

Operation

Phase that it tells about: Architectural Design

Meaning: The total number of phases that faults remain in the architecture. For this
model it is presumed that the measure is after the architectural design phase
is complete since the time required to remove a fault within a phase is likely
more characteristic of the process structure than the process quality.
Consequently, this measure is not germane to initial requirements. If the
V&V process is good, this measure indicates the subtlety of errors. If the
V&V process is poor, this measure reflects on the quality of the V&V
process and the quality of the final product.

Modeled Range: 0 to 1000 fault-phases

Use: Evidence of Development Process Quality

Evidence of V&V Process Quality

Comments: Possibly the distributions associated with this node should be dependent
upon the phase in which the measurement is taken.

The IEEE 982 measure is fault number days. The measure used in this
model substitutes phase for days as the duration measure.
This will help make the measure less dependent upon project size and
staffing.

Reference: IEEE 982
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Name: Rev., Insp, & Wthroughs A

Type: Continuous

Observable: Yes

Phase where Measurable: Architectural Design

Phase that it tells about: Architectural Design

Meaning: Measures the percentage of different types of V&V methods used in the
requirements phase.

Modeled Range: 0 to 1

Use: Evidence of V&V process quality

Comments:

Reference: Moller 1993, Freedman 1990, Redmill 1988Name:Name on model

Type:

Observable:

Phase where Measurable:

Phase which it tells about:

Meaning: Definition and States

Modeled Range:

Use: Used as indicator , Influence on

Reference: IEEE 982

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)>X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=X

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=X

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Appendix A

76

Name: Static Archi Complexity

Type: Continuous

Observable: Yes

Phase where Measurable: Architectural Design

Phase that it tells about: Architectural Design

Meaning: Measures the complexity of interconnections as the number of
interconnections in the software relative to the number of modules.

Modeled Range: 0 to 15. Ten represents the maximum ideal complexity.

Use: Used as evidence of the actual system complexity in the architectural design
phase.

Reference: IEEE 982
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Name: Initial Function Point Analysis

Type: Continuous

Observable: Yes

Phase where Measurable: Requirements, Architectural Design

Phase that it tells about: Requirements, Architectural Design

Meaning: Describes software product quality in terms of 1 minus the number of
defects per software function.

Modeled Range: 0.75 to 1.
A value of 1 indicates perfect quality. The measurement for final products
should be 1 or very, very close to 1. Values much less than 1 for initial
documents indicates a failed development process and further analysis of
the software is unwarranted.

Use: Used in estimation of product quality for initial requirements, final
requirements, initial architectural design, and final architectural design.

Reference: IEEE 982
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Name: Initial Rqmts Traceability

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: Measures the fraction of requirements fulfilled by the initial architecture
design.

Modeled Range: .8 to 1. A value of less than .8 indicates a failed process.

Use: Evidence of initial architectural design quality.

Reference: IEEE 982
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Name: Final Rqmts Traceability

Type: Continuous

Observable: Yes

Phase where Measurable: Architecture

Phase that it tells about: Architecture

Meaning: Measures the fraction of requirements fulfilled by the final architecture
design.

Modeled Range: .95 to 1. A value of less than .5 indicates a failed process.

Use: Evidence of initial architectural design quality.

Reference: IEEE 982

Probability Distribution for Final Requirements Traceability
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Name: Complexity A

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Complexity of the architectural design. The node models three states:

1) Low – The system architecture (e.g., a single stand alone module)
should not pose challenges even for a development organization that
would rate poorly against BTP-14.

2) Medium – The system architecture (e.g., simple interconnection of a
few modules in a single channel) may pose a challenge to a poor
development team, but should be within the capability of a development
organization that rates well against BTP-14.

3)  High – The system architecture (e.g., complex interconnection of
redundant channels containing many modules) may be beyond the
capability of a development organization that rates well against BTP-14.

Modeled Range: N/A

Use: Influences the quality required of the development process.

Influences the quality required of the V&V process.

Comments:

Reference: IEEE 982

Probability Table

Low 0.33

Medium 0.33

High 0.33
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Name: Architecture Safety

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Architecture

Meaning: Quality of the architecture with respect to the fundamental plant safety
requirements. The node models two states:

3) Good – All fundamental plant safety requirements are completely, and
correctly addressed in the architectural design.

4) Poor – One or more fundamental plant safety requirements omitted or
incorrectly addressed in the architectural design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences safety of the software design.

Comments:

Reference:

Probability Table

Requirements
Safety

Correct Incorrect

Final
Architecture

Good Poor Good Poor

Safe 1 0 0 0

Not Safe 0 0 0 0
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Detailed Design Phase Model

Name: Initial Defect Density D

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: The total number of defects per design statement line. It is assumed that
both safety-significant and non-safety-significant errors are counted as they
are both indicators of the overall quality of the design.

Modeled Range: 0 to 0.05. Initial design densities greater than one per 20 lines probably
indicates a failed development process.

Use: Evidence of the quality of the initial design.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982
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Name: Initial Design

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the initial design. The node models two states:

4) Good – All errors in the initial design are detectable by a good V&V
process and are correctable by a good development process. The
implication is that the errors are not too numerous to be detected and
corrected. It may also be important to consider the possibility that errors
are too subtle to be detected by the V&V process. This is not modeled
because there are no metrics to give evidence for the subtlety of errors.

5) Poor – The initial architecture contain some errors that cannot be
detected by a good V&V process or corrected by a good development
process. State 2 is the complement of state 1.

The probability of the initial design being in these states is conditioned by
the quality of the development process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the final architecture.

Evidence of the quality of the development process.

Comments:

Reference: IEEE 982

Probability Table

Development Process Good Poor

Good 0.99 0.9

Poor 0.01 0.1
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Name: Development Process D

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the detailed design process. The node models two states:

1) Good – The detailed design process is good enough that it does not
introduce safety-significant errors that cannot be detected by a good
V&V process and that it can correct detected errors without introducing
new safety-significant errors. The implication is that the development
process does not introduce errors that are too numerous to be detected
and corrected. It may also be important to consider the possibility that
the process introduces errors that are too subtle to be detected by the
V&V process. This is not modeled because there are no metrics to give
evidence for the subtlety of errors.

2) Poor – The detailed design process is expected to produce errors cannot
be detected by a good V&V process or corrected by a good
development process. State 2 is the complement of state 1.

The probability of the detailed design process being in these states is
conditioned by the complexity of the design. A more complex design is
likely to require a better development process to produce adequate initial
and final design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the initial and final architecture.

Comments: 

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: CMM Level D

Type: Discrete

Observable: Yes

Phase where Measurable: All

Phase that it tells about: Detailed Design

Meaning: Software Capability Maturity Model measure for the architectural design
phase. Measures the predictability, effectiveness, and control of a project
software processes. Two states are modeled:

1) CMM ≥ Level 3 — The software development process is defined,
documented, and standardized.

2) CMM < Level 3 — The software development process is not defined.
Success may still be possible based upon the quality of individual
efforts or informal repetition of past successful practices.

Modeled Range: Probability of state 0 to 1.

Use: Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Comments: CMM typically describes the quality of the overall process regardless of
phase. The model, however, includes the CMM measure separately for each
phase. This allows for the possibility that the process maturity may change
(hopefully improve) during the development process. This assumption also
simplifies the modeling.

The model could easily separately consider each of the five states described
by the CMM measure. Currently, no significant benefit is seen from finer
modeling.

Reference: Paulk, Curtis, Chrissis, and Weber 2/1993, Paulk, Weber, Garcia, Chrissis,
and Bush 1993, Paulk, Curtis, Chrissis, and Weber 7/1993

Probability Table

V&V Good Poor

Development
Process

Good Poor Good Poor

< Level 3 0.01 0.95 0.95 0.99

≥ Level 3 0.99 0.05 0.05 0.01



Appendix A

86

Name: V&V D

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the detailed design verification and validation process. The node
models two states:

1) Good – The detailed design V&V process is good enough to detect all
safety-significant errors in a reasonably good initial design. The
implication is that the V&V process can detect all errors they are not too
numerous. It may also be important to consider the skill of the V&V
team with respect to the development team. The V&V team must be
capable of thoroughly understanding  the development team’s products.
This is not modeled because there are no metrics to give evidence for
the V&V team’s skill.

2) Poor – The V&V process is not good enough to detect all safety-
significant errors in a reasonably good initial detailed design. State 2 is
the complement of state 1.

The probability of the detailed design V&V process being in these states
is conditioned by the complexity of the design. A more complex design
is likely to require a better V&V to detect errors in the initial.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed V&V process.

Use: Influences the quality of the final architecture.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: mh/Major Defect D

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: Man-hours or V&V effort per major defect detected in the detailed design.
The measure is applied to new code development. A low number (less than
3 hours) indicates potential problems with the requirements. A high number
(greater than 5 hours) indicates potential problems with the V&V process.

Modeled Range: Man-hours between major defect between 0 and 10 hours. A measure
greater than 10 indicates either an extremely good initial design document
or a failed V&V process. If it can be determined that the former is the case,
the state of the architecture may be directly entered into the model, thus
bypassing this measure.

Use: Evidence of the quality of the initial detailed design.

Evidence of the quality of the detailed design V&V process

Comments:

Reference: IEEE 982
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Name: Final Design

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the final detailed design. The node models two states:

1) Good – All safety-significant requirements are completely, and correctly
addressed in the detailed design.

2) Poor – One or more safety-significant requirements are omitted or
incorrectly addressed in the detailed design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the safety of the detailed design.

Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Evidence of the quality of the initial detailed design.

Comments:

Reference: IEEE 982

Probability Table

Initial
Design

Good Poor

Develop
ment
Process

Good Poor Good Poor

V&V Good Poor Good Poor Good Poor Good Poor

Good 0.98 0.89 0.69 0.49 0.89 0.81 0.63 0.45

Poor 0.02 0.11 0.31 0.51 0.11 0.19 0.37 0.55
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Name: Final Defect Density D

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: The total number of defects per design statement line. It is assumed that
both safety-significant and non-safety-significant errors are counted as they
are both indicators of the overall quality of the design.

Modeled Range: 0 to 0.01. Final design densities greater than one per 100 lines probably
indicates a failed development process.

Use: Evidence of the quality of the final design.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01

P(metric)>X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.002 0.004 0.006 0.008 0.01

P(metric)=X

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.002 0.004 0.006 0.008 0.01

P(metric)=x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.002 0.004 0.006 0.008 0.01

P(metric)=X

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.002 0.004 0.006 0.008 0.01



Appendix A

90

Name: Fault Number Phases D

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Validation

Operation

Phase that it tells about: Detailed Design

Meaning: The total number of phases that faults remain in the detailed design. For this
model it is presumed that the measure is after the detailed design phase is
complete since the time required to remove a fault within a phase is likely
more characteristic of the process structure than the process quality.
Consequently, this measure is not germane to initial requirements. If the
V&V process is good, this measure indicates the subtlety of errors. If the
V&V process is poor, this measure reflects on the quality of the V&V
process and the quality of the final product.

Modeled Range: 0 to 1000 fault-phases

Use: Evidence of Development Process Quality

Evidence of V&V Process Quality

Comments: Possibly the distributions associated with this node should be dependent
upon the phase in which the measurement is taken.

The IEEE 982 measure is fault number days. The measure used in this
model substitutes phase for days as the duration measure.
This will help make the measure less dependent upon project size and
staffing.

Reference: IEEE 982
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Name: Rev., Insp, & Wthroughs D

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: Measures the percentage of different types of V&V methods used in the
detailed design phase.

Modeled Range: 0 to 1

Use: Evidence of V&V process quality

Comments:

Reference: Moller 1993, Freedman 1990, Redmill 1988Name:Name on model

Type:

Observable:

Phase where Measurable:

Phase which it tells about:

Meaning: Definition and States

Modeled Range:

Use: Used as indicator , Influence on

Reference: IEEE 982
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Name: System Design Complexity

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: Design complexity as a function of the total number of interconnections and
the number of input or output variables per module.

Modeled Range: 1 to 50. 25 represents the average complexity equivalent to the Rome
Laboratory fault density measurement for process control systems.

Use: Used as evidence of the actual system complexity in the detailed design
phase.

Reference: IEEE 982
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Name: Cyclomatic Complexity

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Detailed Design

Meaning: Describes module complexity in terms of the number of nodes within a
module that can transfer control to more than one node. For this model this
measure is taken for the most complex module.

Modeled Range: 0 to 15. Ten represents the maximum ideal complexity

Use: Used as evidence of the actual system complexity.

Reference: IEEE 982
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Name: Complexity D

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Complexity of the architectural design. The node models three states:

1) Low – The system detailed design should not pose challenges even for a
development organization that would rate poorly against BTP-14.

2) Medium – The system detailed design may pose a challenge to a poor
development team, but should be within the capability of a development
organization that rates well against BTP-14.

3)  High – The system detailed design may be beyond the capability of a
development organization that rates well against BTP-14.

Modeled Range: N/A

Use: Influences the quality required of the development process.

Influences the quality required of the V&V process.

Comments:

Reference:

Probability Table

Low 0.33

Medium 0.33

High 0.33
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Name: Design Safety

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Design

Meaning: Quality of the detailed design with respect to the fundamental plant safety
requirements. The node models two states:

1) Good – All fundamental plant safety requirements are completely, and
correctly addressed in the detailed design.

2) Poor – One or more fundamental plant safety requirements omitted or
incorrectly addressed in the detailed design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences safety of the software implementation.

Comments:

Reference:

Probability Table

Architecture
Safety

Correct Incorrect

Final Design Good Poor Good Poor

Safe 1 0 0 0

Not Safe 0 0 0 0
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Implementation Phase Model

Name: Initial Defect Density C

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: The total number of defects per line of code. It is assumed that both safety-
significant and non-safety-significant errors are counted as they are both
indicators of the overall quality of the design.

Modeled Range: 0 to 0.05. Initial design densities greater than one per 20 lines probably
indicates a failed development process.

Use: Evidence of the quality of the initial code.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982
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Name: Initial Code

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the initial code. The node models two states:

1) Good – All errors in the initial code are detectable by a good V&V
process and are correctable by a good development process. The
implication is that the errors are not too numerous to be detected and
corrected. It may also be important to consider the possibility that errors
are too subtle to be detected by the V&V process. This is not modeled
because there are no metrics to give evidence for the subtlety of errors.

2) Poor – The initial corrected contain some errors that cannot be detected
by a good V&V process or corrected by a good development process.
State 2 is the complement of state 1.

The probability of the initial design being in these states is conditioned by
the quality of the development process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the final code.

Evidence of the quality of the development process.

Comments:

Reference: IEEE 982

Probability Table

Development Process Good Poor

Good 0.99 0.9

Poor 0.01 0.1
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Name: Development Process C

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the code development process. The node models two states:

1) Good – The code development process is good enough that it does not
introduce safety-significant errors that cannot be detected by a good
V&V process and that it can correct detected errors without introducing
new safety-significant errors. The implication is that the development
process does not introduce errors that are too numerous to be detected
and corrected. It may also be important to consider the possibility that
the process introduces errors are too subtle to be detected by the V&V
process. This is not modeled because there are no metrics to give
evidence for the subtlety of errors.

2) Poor – The code development process is expected to produce errors
cannot be detected by a good V&V process or corrected by a good
development process. State 2 is the complement of state 1.

The probability of the code development process being in these states is
conditioned by the complexity of the code. More complex code is likely to
require a better development process to produce adequate initial and final
design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the initial and final code.

Comments: 

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: CMM Level C

Type: Discrete

Observable: Yes

Phase where Measurable: All

Phase that it tells about: Implementation

Meaning: Software Capability Maturity Model measure for the implementation phase.
Measures the predictability, effectiveness, and control of a project software
processes. Two states are modeled:

1) CMM ≥ Level 3 — The software development process is defined,
documented, and standardized.

2) CMM < Level 3 — The software development process is not defined.
Success may still be possible based upon the quality of individual
efforts or informal repetition of past successful practices.

Modeled Range: Probability of state 0 to 1.

Use: Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Comments: CMM typically describes the quality of the overall process regardless of
phase. The model, however, includes the CMM measure separately for each
phase. This allows for the possibility that the process maturity may change
(hopefully improve) during the development process. This assumption also
simplifies the modeling.

The model could easily separately consider each of the five states described
by the CMM measure. Currently, no significant benefit is seen from finer
modeling.

Reference: Paulk, Curtis, Chrissis, and Weber 2/1993, Paulk, Weber, Garcia, Chrissis,
and Bush 1993, Paulk, Curtis, Chrissis, and Weber 7/1993

Probability Table

V&V Good Poor

Development
Process

Good Poor Good Poor

< Level 3 0.01 0.95 0.95 0.99

≥ Level 3 0.99 0.05 0.05 0.01



Appendix A

100

Name: V&V C

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the code verification and validation process. The node models
two states:

1) Good – The code V&V process is good enough to detect all safety-
significant errors in reasonably good initial code. The implication is that
the V&V process can detect all errors they are not too numerous. It may
also be important to consider the skill of the V&V team with respect to
the development team. The V&V team must be capable of thoroughly
understanding  the development team’s products. This is not modeled
because there are no metrics to give evidence for the V&V team’s skill.

2) Poor – The V&V process is not good enough to detect all safety-
significant errors in reasonably good initial code. State 2 is the
complement of state 1.

The probability of the detailed design V&V process being in these states
is conditioned by the complexity of the code. More complex code is
likely to require a better V&V to detect errors in the initial.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed V&V process.

Use: Influences the quality of the final code.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: mh/Major Defect C

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: Man-hours or V&V effort per major defect detected in the code. The
measure is applied to new code development. A low number (less than 3
hours) indicates potential problems with the requirements. A high number
(greater than 5 hours) indicates potential problems with the V&V process.

Modeled Range: Man-hours between major defect between 0 and 10 hours. A measure
greater than 10 indicates either an extremely good initial design document
or a failed V&V process. If it can be determined that the former is the case,
the state of the architecture may be directly entered into the model, thus
bypassing this measure.

Use: Evidence of the quality of the initial code.

Evidence of the quality of the code V&V process

Comments:

Reference: IEEE 982
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Name: Final Code

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the final code. The node models two states:

1) Good – All safety-significant requirements are completely, and correctly
addressed in the code.

2) Poor – One or more safety-significant requirements are omitted or
incorrectly addressed in the code.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the safety of the code.

Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Evidence of the quality of the initial code.

Comments:

Reference: IEEE 982

Probability Table

Initial
Architec
ture

Good Poor

Develop
ment
Process

Good Poor Good Poor

V&V Good Poor Good Poor Good Poor Good Poor

Good 0.98 0.89 0.69 0.49 0.89 0.81 0.63 0.45

Poor 0.02 0.11 0.31 0.51 0.11 0.19 0.37 0.55
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Name: Final Defect Density C

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: The total number of defects per code statement line. It is assumed that both
safety-significant and non-safety-significant errors are counted as they are
both indicators of the overall quality of the design.

Modeled Range: 0 to 0.01. Final defect densities greater than one per 100 lines probably
indicates a failed development process.

Use: Evidence of the quality of the final code.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982
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Name: Fault Number Phases C

Type: Continuous

Observable: Yes

Phase where Measurable: Validation

Operation

Phase that it tells about: Code

Meaning: The total number of phases that faults remain in the code. For this model it
is presumed that the measure is after the implementation phase is complete
since the time required to remove a fault within a phase is likely more
characteristic of the process structure than the process quality.
Consequently, this measure is not germane to initial requirements. If the
V&V process is good, this measure indicates the subtlety of errors. If the
V&V process is poor, this measure reflects on the quality of the V&V
process and the quality of the final product.

Modeled Range: 0 to 1000 fault-phases

Use: Evidence of Development Process Quality

Evidence of V&V Process Quality

Comments: Possibly the distributions associated with this node should be dependent
upon the phase in which the measurement is taken.

The IEEE 982 measure is fault number days. The measure used in this
model substitutes phase for days as the duration measure.
This will help make the measure less dependent upon project size and
staffing.

Reference: IEEE 982
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P(metric)<X
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Name: Rev., Insp, & Wthroughs C

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: Measures the percentage of different types of V&V methods used in the
implementation phase.

Modeled Range: 0 to 1

Use: Evidence of V&V process quality

Comments:

Reference: Moller 1993, Freedman 1990, Redmill 1988Name:Name on model
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Name: Cyclomatic Complexity

Type: Continuous

Observable: Yes

Phase where Measurable: Detailed Design

Phase that it tells about: Implementation

Meaning: Describes module complexity in terms of the number of nodes within a
module that can transfer control to more than one node. For this model this
measure is taken for the most complex module.

Modeled Range: 0 to 15. Ten represents the maximum ideal complexity

Use: Used as evidence of the actual system complexity.

Reference: IEEE 982
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Name: Complexity C

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Complexity of the code. The node models three states:

1) Low – Coding should not pose challenges even for a development
organization that would rate poorly against BTP-14.

2) Medium – Coding may pose a challenge to a poor development team,
but should be within the capability of a development organization that
rates well against BTP-14.

3)  High –Coding may be beyond the capability of a development
organization that rates well against BTP-14.

Modeled Range: N/A

Use: Influences the quality required of the development process.

Influences the quality required of the V&V process.

Comments:

Reference:

Probability Table

Low 0.33

Medium 0.33

High 0.33
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Name: Code Safety

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Architecture

Meaning: Quality of the architecture with respect to the fundamental plant safety
requirements. The node models two states:

1) Good – All fundamental plant safety requirements are completely, and
correctly addressed in the code.

2) Poor – One or more fundamental plant safety requirements omitted or
incorrectly addressed in the code.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences safety of the software design.

Comments:

Reference:

Probability Table

Requirements
Safety

Correct Incorrect

Final
Architecture

Good Poor Good Poor

Safe 1 0 0 0

Not Safe 0 0 0 0
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Anomaly Resolution Model

Name: Initial Defect Density AR

Type: Continuous

Observable: Yes

Phase where Measurable: Anomaly Resolution

Phase that it tells about: Anomaly Resolution

Meaning: The average of the total number of defects per line of code and the total
number of defects per line of design statements discovered in the revisions
made to address anomalies. It is assumed that both safety-significant and
non-safety-significant errors are counted as they are both indicators of the
overall quality of the design.

Modeled Range: 0 to 0.05. Initial design or code densities greater than one per 20 lines
probably indicates a failed development process.

Use: Evidence of the quality of the initial revised design and code.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982
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Name: Initial Revisions

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the initial revision to requirements, architecture, design, or code
to address anomalies found during validation. The node models two states:

1) Good – All errors in the initial revisions are detectable by a good V&V
process and are correctable by a good development process. The
implication is that the errors are not too numerous to be detected and
corrected. It may also be important to consider the possibility that errors
are too subtle to be detected by the V&V process. This is not modeled
because there are no metrics to give evidence for the subtlety of errors.

2) Poor – The initial revisions contain some errors that cannot be detected
by a good V&V process or corrected by a good development process.
State 2 is the complement of state 1.

The probability of the initial revisions being in these states is conditioned by
the quality of the development process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the final revisions.

Evidence of the quality of the development process.

Comments:

Reference: IEEE 982

Probability Table

Development Process Good Poor

Good 0.99 0.9

Poor 0.01 0.1
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Name: Development Process AR

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the development process for revising requirements, architecture,
design, or code to address anomalies discovered during validation testing.
The node models two states:

1) Good – The revision process is good enough that it does not introduce
safety-significant errors that cannot be detected by a good V&V process
and that it can correct detected errors without introducing new safety-
significant errors. The implication is that the development process does
not introduce errors that are too numerous to be detected and corrected.
It may also be important to consider the possibility that the process
introduces errors are too subtle to be detected by the V&V process. This
is not modeled because there are no metrics to give evidence for the
subtlety of errors.

2) Poor – The revision process is expected to produce errors that cannot be
detected by a good V&V process or corrected by a good development
process. State 2 is the complement of state 1.

The probability of the revision process being in these states is conditioned
by the complexity of the code. More complex code is likely to require a
better development process to produce adequate initial and final design.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the quality of the initial and final revisions.

Comments: 

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: CMM Level AR

Type: Discrete

Observable: Yes

Phase where Measurable: All

Phase that it tells about: Anomaly Resolution

Meaning: Software Capability Maturity Model measure for the anomaly resolution
phase. Measures the predictability, effectiveness, and control of a project
software processes. Two states are modeled:

1) CMM ≥ Level 3 — The software development process is defined,
documented, and standardized.

2) CMM < Level 3 — The software development process is not defined.
Success may still be possible based upon the quality of individual
efforts or informal repetition of past successful practices.

Modeled Range: Probability of state 0 to 1.

Use: Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Comments: CMM typically describes the quality of the overall process regardless of
phase. The model, however, includes the CMM measure separately for each
phase. This allows for the possibility that the process maturity may change
(hopefully improve) during the development process. This assumption also
simplifies the modeling.

The model could easily separately consider each of the five states described
by the CMM measure. Currently, no significant benefit is seen from finer
modeling.

Reference: Paulk, Curtis, Chrissis, and Weber 2/1993, Paulk, Weber, Garcia, Chrissis,
and Bush 1993, Paulk, Curtis, Chrissis, and Weber 7/1993

Probability Table

V&V Good Poor

Development
Process

Good Poor Good Poor

< Level 3 0.01 0.95 0.95 0.99

≥ Level 3 0.99 0.05 0.05 0.01
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Name: V&V AR

Type: Discrete – Prior Belief

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the anomaly resolution verification and validation process. The
node models two states:

1) Good – The anomaly resolution V&V process is good enough to detect
all safety-significant errors in reasonably good initial code. The
implication is that the V&V process can detect all errors they are not too
numerous. It may also be important to consider the skill of the V&V
team with respect to the development team. The V&V team must be
capable of thoroughly understanding  the development team’s products.
This is not modeled because there are no metrics to give evidence for
the V&V team’s skill.

2) Poor – The V&V process is not good enough to detect all safety-
significant errors in reasonably good initial code. State 2 is the
complement of state 1.

The probability of the detailed design V&V process being in these states
is conditioned by the complexity of the code. More complex code is
likely to require a better V&V to detect errors in the initial.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed V&V process.

Use: Influences the quality of the final code.

Comments:

Reference:

Probability Table

Good 0.9

Poor 0.1
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Name: mh/Major Defect AR

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: Man-hours or V&V effort per major defect detected in the revisions to
requirements, architecture, design, or code during the anomaly resolution
process. The measure is applied to new code development. A low number
(less than 3 hours) indicates potential problems with the requirements. A
high number (greater than 5 hours) indicates potential problems with the
V&V process.

Modeled Range: Man-hours between major defect between 0 and 10 hours. A measure
greater than 10 indicates either an extremely good initial design document
or a failed V&V process. If it can be determined that the former is the case,
the state of the architecture may be directly entered into the model, thus
bypassing this measure.

Use: Evidence of the quality of the initial revisions made to resolve anomalies
detected  during validation.

Evidence of the quality of the code V&V process

Comments:

Reference: IEEE 982
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Name: Final Revisions

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the final revisions made during anomaly resolution. The node
models two states:

1) Good – All safety-significant findings of the validation process are
completely, and correctly addressed in the final revisions to the
requirements, architecture, design, and code.

2) Poor – One or more safety-significant findings of the validation process
are not completely, and correctly addressed in the final revisions to the
requirements, architecture, design, and code.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences the safety of the final code.

Evidence of the quality of the development process.

Evidence of the quality of the V&V process.

Evidence of the quality of the initial revisions.

Comments:

Reference: IEEE 982

Probability Table

Initial
Revision
s

Good Poor

Develop
ment
Process

Good Poor Good Poor

V&V Good Poor Good Poor Good Poor Good Poor

Good 0.98 0.89 0.69 0.49 0.89 0.81 0.63 0.45

Poor 0.02 0.11 0.31 0.51 0.11 0.19 0.37 0.55
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Name: Final Defect Density AR

Type: Continuous

Observable: Yes

Phase where Measurable: Implementation

Phase that it tells about: Implementation

Meaning: The average of the total number of defects per line of code and the total
number of defects per line of design statements discovered in the revisions
made to address anomalies. It is assumed that both safety-significant and
non-safety-significant errors are counted as they are both indicators of the
overall quality of the design.

Modeled Range: 0 to 0.01. Final defect densities greater than one per 100 lines probably
indicates a failed development process.

Use: Evidence of the quality of the final code.

Comments This measure is often expressed in defects per thousand lines instead of the
defects per line expressed here.

Reference: IEEE 982
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Name: Initial FPA AR

Type: Continuous

Observable: Yes

Phase where Measurable: Anomaly Resolution

Phase that it tells about: Anomaly Resolution

Meaning: Function point analysis quality measure on the initial draft of revisions to
the requirements or architecture. For the anomaly resolution phase the total
number of errors in both the architecture and requirements revisions is used.
The quality figure is expressed as 1 minus defect density per function point.
It is assumed that both safety-significant and non-safety-significant errors
are counted as they are both indicators of the overall quality of the
requirements.

Modeled Range: FPA 0.8 to 1. An initial FPA < 0.8 probably indicates a failed development
process.

Use: Evidence of the quality of the initial requirements, architecture, design, and
code.

Comments

Reference: IEEE 982
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Name: Final FPA AR

Type: Continuous

Observable: Yes

Phase where Measurable: Anomaly Resolution

Phase that it tells about: Anomaly Resolution

Meaning: Function point analysis quality measure on the final revisions to the
requirements or architecture. For the anomaly resolution phase the total
number of errors in both the architecture and requirements revisions is used.
The quality figure is expressed as 1 minus defect density per function point.
It is assumed that both safety-significant and non-safety-significant errors
are counted as they are both indicators of the overall quality of the
requirements.

Modeled Range: FPA 0.9 to 1. An initial FPA < 0.9 probably indicates a failed development
process.

Use: Evidence of the quality of the initial requirements, architecture, design, and
code.

Comments

Reference: IEEE 982

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)>X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)<X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=X

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(metric)=X

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Appendix A

120

Name: Reliability Growth

Type: Discrete

Observable: Yes

Phase where Measurable: Anomaly Resolution

Phase that it tells about: Anomaly Resolution

Meaning: The reliability growth parameter. Two states are modeled:

1) Positive – The anomaly resolution process is removing more errors than
it introduces.

2) Negative – The anomaly resolution process is inserting more errors than
it removes.

Modeled Range: N/A

Use: Evidence of the quality of the anomaly resolution process.

Comments:

Reference: IEEE 982

Probability Table

P(metric)<X
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Name: Complexity AR

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Composite complexity of the software. The node models three states:

1) Low – Anomaly resolution should not pose challenges even for a
development organization that would rate poorly against BTP-14.

2) Medium – Anomaly resolution may pose a challenge to a poor
development team, but should be within the capability of a development
organization that rates well against BTP-14.

3)  High – Anomaly resolution may be beyond the capability of a
development organization that rates well against BTP-14.

Modeled Range: N/A

Use: Influences the quality required of the development process.

Influences the quality required of the V&V process.

Comments:

Reference:

Probability Table

Low 0.33

Medium 0.33

High 0.33
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Name: Anomaly Resolution

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Architecture

Meaning: Quality of the anomaly detection and resolution with respect to the
fundamental plant safety requirements. The node models two states:

1) Good – All residual errors relating to fundamental plant safety
requirements are were identified by testing and completely, and
correctly addressed by the anomaly resolution process.

2) Poor – One or more residual errors relating to the fundamental plant
safety requirements were not detected during testing or incorrectly
addressed in the anomaly resolution process.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences safety of the software design.

Comments:

Reference:

Probability Table

Testing Correct Incorrect

Final Revisions Good Poor Good Poor

Good 1 0 0 0

Poor 0 0 0 0
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Name: Cyclomatic Complexity C

This is the same node as used in the coding phase. It is shown as a separate node for clarity, but in the
actual model only one node is used.

Name: System Design Complexity

This is the same node as used in the detailed phase. It is shown as a separate node for clarity, but in the
actual model only one node is used.

Name: Static Arch Complexity

This is the same node as used in the architectural design phase. It is shown as a separate node for clarity,
but in the actual model only one node is used.
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Validation Testing Model

Name: Testing

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: N/A

Meaning: Quality of the software testing. The node models two states:

1) Good – Testing is adequate to identify all residual safety related errors
in the final code.

2) Poor – One or more residual safety-significant errors are not detected by
testing.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed test process.

Use: Influence on test quality measures.

Influence on anomaly resolution safety.

Comments:

Reference: IEEE 982

Probability Table

Good 0.9

Poor 0.1
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Name: Modular Test Coverage

Type: Continuous

Observable: Yes

Phase where Measurable: Testing

Phase that it tells about: Testing

Meaning: The percentage of modules for which all test cases have been satisfactorily
completed.

Modeled Range: 0.9 to 1. Probabilities < 0.9 probably indicate a failed test process.

Use: Evidence of the quality of testing.

Comments:

Reference: IEEE 982
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Name: Functional Test Coverage

Type: Continuous

Observable: Yes

Phase where Measurable: Testing

Phase that it tells about: Testing

Meaning: The percentage of functional requirements for which all test cases have been
satisfactorily completed.

Modeled Range: 0.9 to 1. Probabilities < 0.9 probably indicate a failed test process.

Use: Evidence of the quality of testing.

Comments:

Reference: IEEE 982
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Name: MTT Next Fault

Type: Continuous

Observable: Yes

Phase where Measurable: Testing

Phase that it tells about: Testing

Meaning: Mean Time to Discover Next Fault at the completion of the statistical test
program. Indicates the degree of completeness of the statistical testing.
Testing should continue until this time is much greater than the desired
reliability.

Modeled Range: 1000 to 100,000 hours. Statistical testing to establish mean time to next fault
greater than 100,000 hours is probably not practical. Testing that terminated
when the mean time to next failure is predicted to be less than 1000 hours
indicates a failed test program.

Use: Evidence of test quality.

Comments:

Reference: IEEE 982
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Final Product Model

Name: Validated Software Safety

Type: Discrete – Conditional Probability Table

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Final Product

Meaning: Quality of the final software with respect to the fundamental plant safety
requirements. The node models two states:

1) Good – The delivered software completely, and correctly addressed by
the anomaly resolution process.

2) Poor – One or more residual errors relating to the fundamental plant
safety requirements remain in the delivered software.

Modeled Range: Probability that state is good 0.9 to 1. Probabilities < 0.9 probably indicate a
failed development process.

Use: Influences software reliability.

Comments:

Reference:

Probability Table

Code Safety Safe Not Safe

Anomaly
Resolution

Good Poor Good Poor

Safe 1 1 0.9 0

Not Safe 0 0 0.1 1



Appendix A

129

Name: Observed Reliability

Type: Continuous

Observable: Yes

Phase where Measurable: Testing

Phase that it tells about: Final Product

Meaning: The software reliability measured by statistical testing or the final product.
One of several measures such as Failure Rate, Run Reliability may be used
to determine this measure. A number of models are available to convert
observed failure rates into an estimate of observed reliability. Methods for
analyzing predictive accuracy (e.g., prequential likelihood ratio, u-plots, y-
plots) may be used to select the best estimate for observed reliability.

For complicated software or systems the observed reliability may be
calculated by measuring reliability for individual components and
estimating the overall reliability using modeling techniques such as
reliability block diagrams, Markov models, or input domain modeling.

Modeled Range: 0.99 to 1. Observed reliability less than 0.99 indicates a failed development
process.

Use: Evidence of software reliability

Evidence of test quality

Comments:

Reference:
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Name: Reliability

Type: Discrete — Prior estimate

Observable: No

Phase where Measurable: N/A

Phase that it tells about: Final Product

Meaning: The predicted software reliability presented as a discrete distribution
function estimating the probability that the software reliability is < 0.99,
between 0.99 and 0.999, between 0.999 and .9999, or > 0.9999.

Modeled Range: 0 to 1

Use: Model output.

Comments: The prior value should be adjusted based upon some initial estimate of
software reliability. Initial estimates might come from measures such as
Project Initiation Reliability Prediction or the Gaffney Bugs per Line of
Code measure. Both of these measures estimate fault densities. The
estimated fault density must be converted to a reliability estimate for input
to the model.

It is important the prior estimates cover the full range of reliability
distribution modeled. Entering a prior estimate of zero for any part of the
prior distribution will force to zero the final probability that the reliability is
within that range.

Reference:

Probability Table

Validated Software Safety Safe Not Safe

< 0.99 0.05 0.5

0.99 – 0.999 0.15 0.3

0.999 – 0.9999 0.5 0.15

> 0.9999 0.3 0.05
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APPENDIX B
DETAILS OF THE COMBINATORIAL MODEL

This appendix describes the quality functions for the combinatorial model. Each function is described by
5 parameters:  a shape identified, the practical range of the measure (2 parameters) and inflection points
(2 parameters). The quality functions relate each measure to the expected change in defect density form
the average defect density observed over the class of process system software.

The shape factor reflects the relationship between defect density and measure. For example: for mean
time to next failure measure, as the mean time to next failure increases, the quality of the  testing is better
so the defect rate decreases, hence a Z shape. For the man-hours per major defect measure, as the measure
increases the it is inferred that the quality of the V&V process is lower, hence the defect rate increases
Note, this relationship reverses when mh/md is used as a product quality measure.

The practical range indicate the points at which further increases or decreases in the measure give no
additional information about the expected defect density. These are essentially the points at which the
measure value leads to the conclusion that the modeling assumptions discussed in section 2 are violated.
For example, a very low mean time to next failure would indicate that the defect rate is so high that the
software under consideration violates the assumption that the model is dealing with software of
reasonably good quality.

The inflection points define the points at which changes to the measures only have a weak influence on
the expected defect density.
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Table B.1  Process quality factor input metrics

Measures Shape Practical
Range

Inflection
Points

Notes

Mean Time to Next
Failure

Z 4-1000 10 - 60 Inflection points based upon RADC
information on typical fault densities and
failure rate – fault density conversion

Man-hour per major
defect in requirements
and design

S 0-10 3, 5 Inflection points based upon typical values
provided in IEEE 982.1

Man-hours per major
defect in
implementation

S 0-10 3, 5 Inflection points based upon typical values
provided in IEEE 982.1

Modular test coverage Z 0-1 0.9, 1 Inflection points based upon belief that
development processes in accordance with
BTP-14 should achieve a very high level of
test coverage.

Reviews, Inspections,
and walkthroughs

Z 0-1 0.5, 0.8 Inflection points based upon belief that there
is a relatively high degree of overlap between
various review methods.

Capability Maturity
Model

Z 2-5 2,  3 Inflection points based upon belief that a
development process in accordance  with
BTP-14 will normally be  rated at least at
level 3. Level 2 processes might be acceptable
under some circumstances and Level 1
processes are unacceptable. Level 4 and 5
represent the extensive ness of the findings to
other areas of operation, thus this information
gives little additional information about a
specific project.

Fault number  phases Z 0-6 0.5, 2

Requirements change
requests per
requirement

S 0-2 0.1, 0.5
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Table B.2  Requirements and design quality factor input metrics

Measures Shape Range Inflection
Points

Cause & effect
graphing

Z 0.8-1 0.85, 0.95 Inflection points based upon belief that a
relatively small number of ambiguous
requirements represents a significant problem,
but that it is nearly impossible to remove all
ambiguity in a natural language specification.

Design defect
density

S 0.05-
0.002

0.02 – 0.005 Inflection points based upon Rome Laboratory
estimates of typical defect densities for quality
software.

Man-hour per
major defect in
requirements and
design

Z 0-10 5, 3 Inflection points based upon typical values
provided in IEEE 982.1

Function point
analysis for
requirements

Z 0.8-1 0.9, 0.99 Inflection points based upon expectation that
very complete requirements are necessary for
high reliability software.

Function point
analysis for design

Z 0.8-1 0.9, 0.99 Inflection points based upon expectation that
very complete requirements are necessary for
high reliability software.

Graph-theoretic
static architecture

S 0-15 3-10 Inflection points based upon IEEE 982.2
discussion. Static architecture of 3 represents a
simple tree architecture.  There is little benefit
to simplifying the design beyond this point.

Requirements
traceability

Z 0.8-1 0.9, 0.99 Inflection points based upon expectation that
very complete design necessary for high
reliability software.

Table B.3 Implementation  quality factor input metrics

Measures Shape Range Inflection
Points

Code defect density S 0.05-
0.002

0.02 – 0.005 Inflection points based upon Rome Laboratory
estimates of typical defect densities for quality
software.

Man-hour per
major defect

Z 0-10 5, 3 Inflection points based upon typical values
provided in IEEE 982.1

Cyclomatic
Complexity

S 0-15 3-10 Inflection points based upon IEEE 982.2
discussion. Static architecture of 3 represents a
simple tree architecture.  There is little benefit
to simplifying the design beyond this point.
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